

Part 1 --Sensor Network Applications Peter Scheuermann & Goce Trajcevski

Military Applications:

Command, Control, Communications, Computing, Intelligence, IVERSITY Surveillance, Reconnaissance, Targeting (C4ISRT)

Monitoring friendly forces, equipment and ammunition

- **Battlefield surveillance**
- **Reconnaissance of opposing forces and terrain**
- **Targeting**
- **Battle damage assessment**
- **Nuclear, Biological and Chemical (NBC) attack**
- **detection and reconnaissance**

Further Military Applications

Intrusion detection (mine fields) Detection of firing gun (small arms) location Chemical (biological) attack detection Targeting and target tracking systems Enhanced navigation systems Battle damage assessment system Enhanced logistics systems

IWESTERN IVERSITY

Environmental Applications

- **Tracking the movements of birds, small animals, and insects**
- **Monitoring environmental conditions that affect crops and livestock**
- **Irrigation**
- **Earth monitoring and planetary exploration**
- **Chemical/biological detection**
- **Biological, Earth, and environmental monitoring in marine,**
- **soil, and atmospheric contexts**
- **Meteorological or geophysical research**
- **Pollution study**
- **Precision agriculture**
- **Biocomplexity mapping of the environment**
- **Flood detection, and Forest fire detection.**

4

IWESTERN IVERSITY

Motivation

Questions

- **What environmental factors make for a good nest?**
- **How much can they vary?**
- **What are the occupancy patterns during incubation?**
- **What environmental changes occurs in the burrows and their surroundings during the breeding season?**

Motivation--continued

Problems

- **Seabird colonies are very sensitive to disturbances**
- **The impact of human presence can distort results by changing behavioral patterns and destroy sensitive populations**
- **Repeated disturbance will lead to abandonment of the colony**

Solution

• **Deployment of a sensor network**

Habitat Monitoring

IWESTERN IVERSITY

- Approx. 200 nodes including MICA, MICA2, burrow nodes (with IR) and weat Ħ. station nodes
- \bullet Motes detect light, barometric pressure, relative humidity and temperature conditions.
- ^{\pm} An infrared heat sensor detects whether the nest is occupied by a seabird, and whether the bird has company.
- \uparrow Motes within the burrows send readings out to a single gateway sensor above ground, which then wirelessly relays collected information to a laptop computer lighthouse $(\sim]350$ feet).
- **The laptop, also powered by photovoltaic cells, connects to the Internet via sate**
- \bullet Computer at base-station logs data and maintains database

Routing

- **Routing directly from node to gateway not possible**
- **Approach proposed for scheduled communication:**
	- **Determine routing tree**
	- **Each gate is assigned a level based on the tree**
	- **Each level transmits to the next and returns to sleep**
	- **Process continues until all level have completed transmission**
	- **The entire network returns to sleep mode**
	- **The process repeats itself at a specified point in the future**

本.

X Rosser Sen

ж.,

 $R_{\rm{max}}$

峯

Network Re-tasking IVERSITY

Initially collect absolute temperature readings

- **After initial interpretation, could be realized that information of interest is contained in significant temperature changes**
- **Full reprogramming process is costly:**
	- **Transmission of 10 kbit of data**
	- **Reprogramming application: 2 minutes @ 10 mA**
	- **Equals one complete days energy**
- **Virtual Machine based retasking:**
	- **Only small parts of the code needs to be changed**

IVERSITY

Health and Status Monitoring

- $\#$ Monitor the mote's health and the health of neighboring motes
- $\#$ Duty cycle can be dynamically adjusted to alter lifetime
- \bullet Periodically include battery voltage level with sensor readings (0~3.3volts)
- \uparrow Can be used to infer the validity of the mote's sensor readings

Forest Fire Detection: FireWxNet

(Best paper award at Mobisys06—Hartung et al) **IVERSITY**

Design and construction of a multi-tiered portable wireless system for monitoring weather conditions in rugged fire environments.

Blends together long-range wireless technology based on directional radios with a short-range multi-hop sensor network.

Also integrated web-enabled surveillance cameras to provide visual data

Weather and Forest Fires

IWESTERN mperature

As Temperature goes up: fuels dry out, fuels temp rises, etc..

lative Humidity

10 minute fuels (small twigs) change with RH quickly.

10,000 hour fuels (large trees) not very affected.

nd Speed and Direction

Feeds fire with extra oxygen. Dictates direction. Can change quickly.

ample: Temperature Inversions and ermal Belts

Temperature is colder at lower elevations. Fires above the inversion continue to burn actively.

Band of warmer air trapped midway up the mountain.

When they break – increased winds, rapid increase in temp.

Mesh routing over 802.15.4

What makes this difficult?

IWESTERN IVERSITY

Device mobility

- Both patient sensors and receiving devices are moving around
- \blacksquare Need to maintain good connectivity in elevators, stairwells, etc. Multihop, multicast communications
	- Cannot always assume fixed infrastructure e.g., disaster response
	- Multiple patient sensors may be monitored by multiple end users
- Limited device capabilities
	- Low CPU power (10 MIPS), tiny memories (10 KB of RAM)
	- **Cannot run sophisticated protocols with lots of state**
- Radio bandwidth is very limited
	- Low-power, 802.15.4 radios max PHY rate of 250 Kbps
	- Drops to 100 Kbps when taking MAC overhead and framing into account
	- A small number of sensors can rapidly saturate the channel

Applications: Emergency medicine

IWESTERN

nual tracking of patient status is difficult

Current systems are paper, phone, radio based

No real-time updates on patient condition

ge accidents, fires, terrorist attacks

Normal organized community support may be damaged or destroyed Large numbers of patients, severe load on emergency personnel

Routing Protocol Design

CodeBlue requires an *ad hoc* multicast routing protocol

- *Ad hoc*: No need for fixed infrastructure, forms routes "on demand"
- Multicast: Data from each sensor can be received by multiple end-user devices

Ad hoc routing has been extensively studied in wireless environments

- AODV, CSR, DSDV, ODMRP, ADMR,
- Much of this work done in simulation assuming perfect radio links
- Implementations primarily focus on laptops or PDAs with 802.11 radios

What's new here?

IWESTERN IVERSITY

- Very limited radio bandwidth: protocol overhead is a big deal
- Real radios with lossy, asymmetric links
- \blacksquare Nodes have very small memory (< 10KB) and limited computational power

IWESTERN

The Pothole Patrol: Using a Mobile Sensor Network for Road Surface Monitoring

Hazardous to drivers and increasing repair costs due to vehicle damage

Determine "which" roads need to be fixed

Static sensors will not do well – requires mobility!

 $P²$ is first of its kind

Challenge : differentiate potholes from other road anomalies (*railroad crossings, expansion joints)*

Challenge : coping with variations in detecting the same pothole. *(speed, sensor orientation)*

P2 successfully detects most potholes *(>90% accuracy on test data)*

DATA ACQUISITION

Loosely Labeled Training Data

- We know only *types of anomalies* and their *rough frequencies*
- Exact numbers and locations are *unknown*
- **Extends available training set**
- Storrow Dr. Heavily used four-lane parkway on the Boston side of the Charles River with several bridges, some potholes.
- Memorial Dr. Heavily used four-lane parkway on the Cambridge side of the Charles River, good condition.
- Binney St. A two-lane street with many sunk-in manholes and sealed cracks, one pothole.
- Hwy I-93 An 8 lane interstate highway that cuts through the center of Boston in good condition.
- Beacham St A heavily trafficked back road in very poor condition.

IWESTERN IVERSITY

ALGORITHM

- **Features of accelerometer data**
- \blacksquare High energy events are potholes?
	- Not all !
	- Rail road crossings, expansion joints, door slamming are high energy events
- \blacksquare Accelerometer data is processed by embedded computer
	- \blacksquare 256-sample windows
	- **Pass through 5 different filters**

ALGORITHM - Clustering

- \blacksquare Improve accuracy
- Cluster of at least *k* events must happen in the same location with small margin of error(Δd)

\blacksquare Clustering algorithm

- Place each detection in Δd *X* Δd grid.
- Compute pairwise distances in same or neighboring grid cells
- \blacksquare Iteratively merge pairs of distances in order of distance
- \blacksquare Max intra cluster distance $\lt \Delta t$
- Reported location is the centroid of the locations within it

Major topics and design principles

- Self-configuration: Ħ
	- --localization, synchronization, coverage
- In-network programming Ħ --data aggregation, fusion
- Low-energy data routing $\#$
	- --data centric approach, geographical routing

IWESTERN IVERSITY

Fine Grained Time and Location

- Unlike Internet, node time/space location essential for local/collaborative detection
	- fine-grained localization and time synchronization needed to detect events in three space and compare detections across nodes
- GPS provides solution where available (with differential GPS providing finer granularity)

Coverage measures

- GPS not always available, too "costly," too bulky
- **other approaches under study**
- **Localization of sensor nodes has many uses**
	- **Exercise 1** beamforming for localization of targets and events
	- **geographical forwarding**
	- **geographical addressing**

Given: sensor field (either known sensor locations, or spatial density)

- $\#$ *area coverage:* fraction of area covered by sensors
- \uparrow detectability: probability sensors detect moving objects
- \blacksquare node coverage: fraction of sensors covered by other sensors
- \sharp control:
	- where to add new nodes for max coverage
	- how to move existing nodes for max coverage

 \overline{A}

In Network Processing

- \bullet communication expensive when limited
	- **power**

IWESTERN IVERSITY

- **bandwidth**
- $\#$ perform (data) processing in network
	- close to (at) data
	- **forward fused/synthesized results**
	- e.g., find max. of data
- \sharp distributed data, distributed computation

Data Centric Protocols, In-network Processing goal:

- Interpretation of spatially distributed data (Per-node processing alone is not enough)
- network does in-network processing based on distribution of data
- Queries automatically directed towards nodes that maintain relevant/matching data

Pattern-triggered data collection

- **Multi-resolution data storage and retrieval**
- Distributed edge/feature detection
- Index data for easy temporal and spatial searching
- **Finding global statistics (e.g., distribution)**

Directed Diffusion: Data Centric Routing

- **Basic idea**
	- name data (not nodes) with externally relevant attributes: data type, time, location of node, SNR,
	- \blacksquare diffuse requests and responses across network using application driven routing (e.g., geo sensitive or not)
	- **support in-network aggregation and processing**

Data sources publish data, data clients subscribe to data

- **however, all nodes may play both roles**
	- node that aggregates/combines/processes incoming sensor node data becomes a source of new data

- node that only publishes when combination of conditions arise, is client for triggering event data
- *true peer to peer system?*