

NORTHWESTERN **UNIVERSITY**

1

EECS 369: Introduction to Sensor Networks

Peter Scheuermann and Goce Trajcevski

Week2: Overview of Communication and Networking – PartI

Electromagnetic Signals – time domain

- Strength of the signal (at space) $=$ Function of time 耳
- Can also be expressed as a function of frequency 貫
	- Signal consists of components of different frequencies
	- Analog signal signal intensity varies in a smooth fashion over time
		- No breaks or discontinuities in the signal
	- \blacksquare Digital signal signal intensity maintains a constant level for some period of time and then changes to another constant level
	- Periodic signal analog or digital signal pattern that repeats over time Ħ.
		- $s(t+T) = s(t)$
			- where *T* is the period of the signal

Electromagnetic Signals – time domain

- Aperiodic signal analog or digital signal pattern that doesn't repeat over time
- **Figure 2** Peak amplitude (*A*) maximum value or strength of the signal over time (e.g., measured in volts)
- \blacksquare Frequency (f)
	- Rate, in cycles per second, or Hertz (Hz) at which the signal repeats
	- \bullet Period (*T*) amount of time it takes for one repetition of the signal $T = 1/f$
	- Phase (ϕ) measure of the relative position in time within a single 耳 period of a signal
	- \bullet Wavelength (λ) distance occupied by a single cycle of the signal
		- Or, the distance between two points of corresponding phase of two consecutive cycles

Electromagnetic Signals – time domain (sine-waves)

- General sine wave \blacksquare
	- $s(t) = A \sin(2\pi ft + \phi)$
- \sharp One can vary each of the three parameters in the definition
	- **a** (a) $A = 1, f = 1$ Hz, $\phi = 0$; thus $T = 1$ s
	- (b) Reduced peak amplitude; *A*=0.5
	- (c) Increased frequency; $f = 2$, thus $T = \frac{1}{2}$
	- (d) Phase shift; $\phi = \pi/4$ radians (45 degrees)
- \blacksquare note: 2π radians = 360° = 1 period
- When the horizontal axis is *time*, graphs show value of a signal at a 耳 given point in *space* as a function of *time*
- With the horizontal axis in *space*, graphs show value of a signal at a 耳 given point in *time* as a function of *distance*
	- At a particular instant of time, the intensity of the signal varies as a function of distance from the source

Figure 2.3 $s(t) = A \sin(2 f t + \phi)$

Electromagnetic signals: frequency-domain

- **Fundamental frequency** the one of which all other frequency 耳 components of a signal are integer multiples of
- Spectrum range of frequencies that a signal contains 耳
- Absolute bandwidth width of the spectrum of a signal 复
- Effective bandwidth (or just bandwidth) narrow band of frequencies 量 that most of the signal's energy is contained in
- Any (including electromagnetic) signal can be shown to consist of a collection of periodic analog signals (sine waves) at different amplitudes, frequencies, and phases (Note: aperiodic signals have a *continuum* of frequencies in their spectrum…)
- Key mathematical tool: *Fourier Transform*

NORTHWESTERN

Electromagnetic signals – time vs. frequency

Adding different frequencies Approximating periodic signal With sine waves

NORTHWESTERN **UNIVERSITY**

Electromagnetic signals – Fourier, spectra, bandwidth

Fundamental: f Spectrum: {f,3f,5f } Bandwidth: $[5f - f] = 4f$

Fundamental: f Spectrum: {f,3f,5f,7f } Bandwidth: $[7f - f] = 6f$

Fundamental: f Spectrum: {f,3f,5f,7f,9f,11f,… } Bandwidth: infinite…

NOTE: power = F (amplitude) => most of the useful "information" contained in a "narrow" bandwidth 8

UNIVERSITY

Electromagnetic signals – Fourier, spectra, bandwidth…

(Example:) Approximate the square wave of "0" and "1" with 3 sin-waves; Assume that the main frequency is *f = 1MHz*; Then:

- the bandwidth of the signal is $5f - f = 4f = 4MHz$.

Now, for $f = IMHz$, the period is $t = 1/f = 10^{-6}$ sec. To get a "feeling" about the *capacity* of a channel transmitting such signal, assume that this represents an alternating-bit-sequence: e.g., "1" or "0" occurs every half-period, which is, a new bit every $T/2 = 0.5 \mu s$. Then:

 - the speed of transmission (data rate) is *2*x*10⁶bps = 2Mbps,* for a channel with bandwidth of *4MHz* with a fundamental frequency of *1MHz*

Conclusions:

-Greater bandwidth => greater information-carrying capacity;

- -A digital signal (even periodic!) will have infinite bandwidth;
- -The system will limit the "useful" bandwidth (cost!)
- -Any limit of the bandwidth will distort the signal…

Data, Signals, Communication…

Data - entities that convey meaning, or information \blacksquare

- **Analog**
	- Video
	- Audio
- **Digital**
	- \blacksquare Text.
	- **Integers**
- **Signals - electric or electromagnetic representations of data** 耳
- **Transmission - communication of the data via the propagation and** 量 **processing of the corresponding signals**

Analog vs. Digital Signals

D G T L I I A

- \blacksquare A sequence of voltage pulses that may be transmitted over a copper wire medium
- Generally cheaper than analog signaling 耳
- Less susceptible to noise interference 耳
- Suffer more from attenuation 量
- Digital signals can propagate analog and 耳 digital data **Analog**
-
- A continuously varying electromagnetic wave 耳 that may be propagated over a variety of media, depending on frequency
- Examples of media: 耳
	- Copper wire media (twisted pair and coaxial cable)
	- Fiber optic cable
	- Atmosphere or space propagation
- Analog signals can propagate analog and Ħ. digital data

Analog Signaling

Digital Signaling

Choosing (Data, Signal) Combinations

F Digital data, digital signal

- Equipment for encoding is less expensive than digital-to-analog equipment
- Analog data, digital signal
	- **Conversion permits use of modern digital transmission and** switching equipment
- \blacksquare Digital data, analog signal
	- Some transmission media will only propagate analog signals
	- **Examples include optical fiber and satellite**
- Analog data, analog signal
	- Analog data easily converted to analog signal

Analog Transmission

- **The Transmit analog signals without regard to content**
- \uparrow **Attenuation limits length of transmission link**
- \bullet Cascaded amplifiers boost signal's energy for longer distances but cause distortion
	- Analog data can tolerate distortion
	- **Introduces errors in digital data**

Digital Transmission

- \blacksquare Concerned with the **content** of the signal
- \blacksquare Attenuation endangers integrity of data
- \blacksquare Digital Signal
	- Repeaters achieve greater distance
	- Repeaters recover the signal and retransmit
- \blacksquare Analog signal carrying digital data
	- Retransmission device recovers the digital data from analog signal
	- Generates new, clean analog signal

Digital Channel Capacity

- \blacksquare Impairments, such as noise, limit data rate that can be achieved
- **F** For digital data, to what extent do impairments limit data rate?
- \bullet Channel Capacity the maximum rate at which data can be transmitted over a given communication path, or channel, under given conditions
- **■** Data rate rate at which data can be communicated (bps)
- **Bandwidth the bandwidth of the transmitted signal as** constrained by the transmitter and the nature of the transmission medium (Hertz)

Multi-level improvements: Nyquist Bandwidth NORTHWESTERN UNIVERSITY

- Noise average level of noise over the communications path 耳
- Error rate rate at which errors occur 量
	- **E**rror = transmit 1 and receive 0; transmit 0 and receive 1
- Recall the Example: for binary signals (two voltage levels) 耳
	- $C = 2B$
- \uparrow Can be improved with multilevel signaling:
	- $C = 2B \log_2 M$
		- $M =$ number of discrete signal or voltage levels

In the context of the previous example, all other things being equal, if we have 8 different voltage levels, than the capacity of the channel would increase to 6 Mbps…

Noise Impact: Signal-to-Noise Ratio

- Ratio of the power in a signal to the power contained in the noise that's 耳 present at a particular point in the transmission
- \uparrow Typically measured at a receiver
- Signal-to-noise ratio (SNR, or S/N) 其

noise power $(SNR)_{dB} = 10 \log_{10} \frac{\text{signal power}}{\text{noise power}}$

- A high SNR means a high-quality signal, low number of required 耳 intermediate repeaters
- SNR sets upper bound on achievable data rate, theoretically (Shannon):

$$
C = B \log_2 \left(1 + SNR \right)
$$

In practice, only much lower rates achieved:

- Formula assumes white noise (thermal noise), e.g., impulse noise is not accounted for

- Attenuation distortion or delay distortion not accounted for

Realistic Channel (Nyquist + Shannon) Example:

Assume: spectrum of a channel between 3 MHz and 4 MHz; 耳 $SNR_{\rm dB} = 24$ dB. Then:

> $SNR_{dB} = 24 dB = 10 log_{10}(SNR)$ $SNR = 251$ $B = 4 \text{ MHz} - 3 \text{ MHz} = 1 \text{ MHz}$

Using Shannon's formula 耳

$$
C = 10^6 \times \log_2(1 + 251) \approx 10^6 \times 8 = 8 \text{Mbps}
$$

This can be achieved with: \blacksquare different signaling levels

 $8\times10^6 = 2\times\left(10^6\right)\!\times\log_2$ $M = 16$ $4 = \log_2 M$ $C = 2B \log_2 M$ $\times 10^6 = 2 \times \left(10^6\right) \!\!\times\! \log_2 M$

UNIVERSITY

Types of Transmission Media

- **Transmission Medium** = Physical path between transmitter and receiver
- **Guided Media** = Waves are guided along a solid medium
	- E.g., copper twisted pair, copper coaxial cable, optical fiber
- **Unguided Media** = Provides means of transmission but does not guide electromagnetic signals
	- **Usually referred to as wireless transmission**
	- E.g., atmosphere, outer space
	- **Transmission AND Reception done by an antenna** (directional/omnidirectional)

NORTHWESTERN **UNIVERSITY**

General Frequency Ranges

802.11b;Bluetooth -> 2.4GHz 802.11a -> 5GHz

Figure 2.10 Electromagnetic Spectrum for Telecommunications

Multiplexing in Communication

- Capacity of transmission medium usually exceeds capacity 耳 required for transmission of a single signal
- Multiplexing carrying multiple signals on a single medium 耳
	- **More efficient use of transmission medium**

Why Multiplexing…(FDM vs. TDM)

- Cost per kbps of transmission facility declines with an increase in the 耳 data rate
- Cost of transmission and receiving equipment declines with increased 耳 data rate
- Most individual data communicating devices require relatively modest data rate support

- Frequency-division multiplexing (FDM) ш
	- Takes advantage of the fact that the useful bandwidth of the medium exceeds the required bandwidth of a given signal
- Time-division multiplexing (TDM) 耳
	- Takes advantage of the fact that the achievable bit rate of the medium exceeds the required data rate of a digital signal

Transmission – Signal Encoding Criteria

NORTHWESTERN **UNIVERSITY**

- What determines how successful a 量 receiver will be in interpreting an incoming signal?
	- Signal-to-noise ratio
	- Data rate
	- **Bandwidth**
- An increase in data rate increases 置 bit error rate
- An increase in SNR decreases bit 复 error rate
- An increase in bandwidth allows 重 an increase in data rate
	- **EXECUTE:** Signal interference and noise immunity bit position
		- **Performance in the presence of noise**
	- \uparrow Cost and complexity
		- **The higher the signal rate to achieve a given data rate, the greater** the cost 26
- \sharp Signal spectrum
	- With lack of highfrequency components, less bandwidth required
	- With no dc component, ac coupling via transformer possible
	- \blacksquare Transfer function of a channel is worse near band edges
- \sharp Clocking
	- **Ease of determining** beginning and end of each

NORTHWESTERN **UNIVERSITY**

Transmission – Digital-to-Analog Encoding

Figure 6.2 Modulation of Analog Signals for Digital Data

-Can have *multiple* frequency shift key (MFSK)

-Can combine ASK and PSK to obtain QAM (Quadrature Amplitude modulation), enabling two different signals to be sent on one carrier frequency

Transmission – Analog-to-Digital Encoding

1. PCM (Pulse-Code Modulation)

- Based on the sampling theorem 耳
- Each analog sample is assigned 耳 a binary code
	- **Analog samples are referred** to as pulse amplitude modulation (PAM) samples
- **The digital signal consists of** block of *n* bits, where each *n*-bit number is the amplitude of a PCM pulse

Transmission – Analog-to-Digital Encoding

2. DM (Delta Modulation) Signal

- Analog input is 耳 approximated by staircase function
	- **Moves up or down by** one quantization level (δ) at each sampling interval
- The bit stream 量 approximates derivative of analog signal (rather than amplitude)
	- \blacksquare 1 is generated if function goes up
	- 0 otherwise

UNIVERSITY

Transmission – Analog-to-Digital Encoding

NOTE:

- \blacksquare Accuracy improved by increasing sampling rate
	- **However, this increases the** data rate
- \blacksquare Advantage of DM over PCM is the simplicity of its implementation
- \blacksquare Two important parameters
	- Size of step assigned to each binary digit (δ)
	- Sampling rate
- Growth in popularity of digital 耳 techniques for sending analog data
	- Repeaters are used instead of amplifiers
		- No additive noise
	- **TDM** is used instead of FDM
		- No intermodulation noise
	- Conversion to digital signaling allows use of more efficient digital switching techniques

UNIVERSITY

Transmission – Spread-Spectrum Encoding

- Input is fed into a channel 茸 encoder
	- Produces analog signal with narrow bandwidth
- Signal is further modulated 耳 using sequence of digits
	- **Spreading code or** spreading sequence
	- **Generated by** pseudonoise, or pseudorandom number generator
- Effect of modulation is to 置 increase bandwidth of signal to be transmitted
- On receiving end, digit 耳 sequence is used to demodulate the spread spectrum signal
- Signal is fed into a channel 耳 decoder to recover data

Figure 7.1 General Model of Spread Spectrum Digital Communication System

Transmission – Spread-Spectrum Encoding

NORTHWESTERN **UNIVERSITY**

- What can be gained \blacksquare from apparent waste of spectrum?
	- **Immunity from** various kinds of noise and multipath distortion
	- Can be used for hiding and encrypting signals
	- Several users can independently use the same higher bandwidth with very little interference
- Signal is broadcast over seemingly 目 random series of radio frequencies
	- A number of channels allocated for the FH signal
	- Width of each channel corresponds to bandwidth of input signal
- \equiv Signal hops from frequency to frequency at fixed intervals
	- **Transmitter operates in one** channel at a time
	- **Bits are transmitted using some** encoding scheme
	- At each successive interval, a new carrier frequency is selected

Channel sequence dictated by spreading code; Receiver, hopping between frequencies in synchronization with transmitter, picks up message…

- Advantages: Eavesdroppers hear only unintelligible blips Attempts to jam signal on one frequency succeed only at knocking out a few bits $\begin{bmatrix} 33 \end{bmatrix}$

Transmission – Spread-Spectrum Encoding

Figure 7.6 Example of Direct Sequence Spread Spectrum

Antennas and Signal Propagation

- \sharp An antenna is an electrical conductor or system of conductors
	- **Transmission** radiates electromagnetic energy into space
	- Reception collects electromagnetic energy from space

 $\#$ In two-way communication, the same antenna can be used for transmission and reception

Radiation pattern 耳

- Graphical representation of radiation properties of an antenna
- **Depicted as two-dimensional** cross section
- **EXECUTE:** Beam width (or half-power beam width)
	- **Measure of directivity of antenna**
- Reception pattern 耳
	- Receiving antenna's equivalent to radiation pattern

Antennas and Signal Propagation

 $\mathbf{A}^{\mathbf{y}}$ \boldsymbol{a} \boldsymbol{b} directrix \boldsymbol{c} \mathbf{x} focus

(a) Parabola

(b) Cross-section of parabolic antenna showing reflective property

Antennas: Radiation Patterns

NORTHWESTERN **UNIVERSITY**

Side view (xy-plane)

Side view (zy-plane)

(a) Simple dipole

Top view (xz-plane)

Side view (xy-plane)

Side view (zy-plane)

(b) Directed antenna

Top view (xz-plane)

Antennas: Radiation Patterns

Most of the antennas do NOT operate equally-well in all directions…

Antennas and Propagation

Antenna gain 耳

- **Power output, in** a particular direction, compared to that produced in any direction by a perfect omnidirectional antenna (isotropic antenna)
- Effective area 量
	- Related to physical size and shape of antenna

Relationship between antenna 苴 gain and effective area

$$
G = \frac{4\pi A_e}{\lambda^2} = \frac{4\pi f^2 A_e}{c^2}
$$

- $G =$ antenna gain
- Ae = effective area
- \blacksquare $f =$ carrier frequency
- \bullet c = speed of light (\approx 3 \prime 10^8 m/s
- λ = carrier wavelength

NORTHWESTERN **UNIVERSITY**

Antennas and Propagation

Ground-wave propagation:

- Follows contour of the earth 置
- Can Propagate considerable 置 distances
- Frequencies up to 2 MHz 置
- Example 耳
	- **AM** radio

Sky-Wave Propagation

- Signal reflected from ionized layer of \mathbb{R} atmosphere back down to earth
- Signal can travel a number of hops, 耳 back and forth between ionosphere and earth's surface (1000's of Km)
- Reflection effect caused by refraction 置
- Examples \blacksquare
	- **Amateur radio**
	- CB radio 40

UNIVERSITY

Antennas and Propagation: Line-Of-Sight (LOS)

Transmitting and receiving antennas must be within line of sight

- Satellite communication signal above 30 MHz not reflected by ionosphere
- Ground communication antennas within *effective* line of site due to refraction
- Refraction bending of microwaves by the atmosphere
	- Velocity of electromagnetic wave is a function of the density of the medium
	- When wave changes medium, speed changes
	- Wave bends at the boundary between mediums

$$
3.57\left(\sqrt{Kh_1} + \sqrt{Kh_2}\right)
$$

K = 4/3

Antennas: Reality-Check…

Attenuation and attenuation distortion \blacksquare

 $(4\pi d)^2$ $(4\pi fd)$

 $(d)^2$ $(4\pi fd)$

 $(4\pi d)^2$ $(4$

2

 λ^2

 $=\frac{(4\pi d)}{a^2}=$

 $\tilde{t}_t = (4\pi d)^{-1} = (4\pi d)^{-1}$

2

c

2

- Free space loss 置
- Noise \blacksquare
- Atmospheric absorption \blacksquare

P

r

P

- Multipath 耳
- Refraction 置
- Thermal noise 置

- Strength of signal falls off with 量 distance over transmission medium
- Attenuation factors for unguided 置 media:
	- Received signal must have sufficient strength so that circuitry in the receiver can interpret the signal
	- Signal must maintain a level sufficiently higher than noise to be received without error
	- Attenuation is greater at higher frequencies, causing distortion

Antennas: Reality-Check…

- Thermal noise due to agitation of 耳 electrons
- Present in all electronic devices and 置 transmission media
- Cannot be eliminated 宣
- Function of temperature 宣
- Particularly significant for satellite 置 communication

NOTE: independent of frequency \Rightarrow For a bandwidth "B", just multiply the RHS of the equation

Amount of thermal noise to be \blacksquare found in a bandwidth of 1Hz in any device or conductor is:

$$
N_0 = kT (W/Hz)
$$

- $N0$ = noise power density in watts per 1 Hz of bandwidth
- \blacksquare k = Boltzmann's constant $= 1.3803 \div 10-23$ J/K
- \blacksquare *T* = temperature, in kelvins (absolute temperature)

UNIVERSITY

Antennas: Reality-Check…

- Intermodulation noise occurs if \blacksquare signals with different frequencies share the same medium
	- **Interference caused by a signal** produced at a frequency that is the sum or difference of original frequencies
- Crosstalk unwanted coupling 耳 between signal paths
- Impulse noise irregular pulses or 宣 noise spikes
	- Short duration and of relatively high amplitude
	- Caused by external electromagnetic disturbances, or faults and flaws in the communications system
- Atmospheric absorption water 耳 vapor and oxygen contribute to attenuation
- Multipath obstacles reflect 置 signals so that multiple copies with varying delays are received
- Refraction bending of radio 耳 waves as they propagate through the atmosphere

Antennas: Reality-Check…

- Multiple copies of a signal may 宣 arrive at different phases
	- **If phases add destructively,** the signal level relative to noise declines, making detection more difficult
- Intersymbol interference (ISI) 耳
	- **One or more delayed** copies of a pulse may arrive at the same time as the primary pulse for a subsequent bit

Dealing with "Reality":

- Transmitter adds error- \blacksquare correcting code to data block
	- Code is a function of the data bits
- **Receiver calculates error**correcting code from incoming data bits
	- **If calculated code** matches incoming code, no error occurred
	- **If error-correcting codes** don't match, receiver attempts to determine bits in error and correct

…plus, some sophisticated signal-processing algorithms to deal with intersymbol interference

Satellite Communication

- Earth Stations \blacksquare antenna systems on or near earth
- Uplink transmission 耳 from an earth station to a satellite
- Downlink 置 transmission from a satellite to an earth station
- Transponder 耳 electronics in the satellite that convert uplink signals to downlink signals
- Coverage area 耳
	- Global, regional, national
- Service type 重
	- Fixed service satellite (FSS)
	- **Broadcast service** satellite (BSS)
	- **Mobile service satellite** (MSS)
- General usage 鳳
	- Commercial, military, amateur, experimental

Circular or elliptical orbit 夏

- Circular with center at earth's center
- Elliptical with one foci at earth's center
- Orbit around earth in \blacksquare different planes
	- Equatorial orbit above earth's equator
	- Polar orbit passes over both poles
	- Other orbits referred to as inclined orbits
- Altitude of satellites \blacksquare
	- Geostationary orbit (GEO)
	- Medium earth orbit (MEO)
	- **Low earth orbit** (LEO)

UNIVERSITY

Satellites…

- 宣 Advantages of the the GEO orbit
	- No problem with frequency changes
	- \blacksquare Tracking of the satellite is simplified
	- **High coverage area**
- Disadvantages of the GEO 宣 orbit
	- Weak signal after traveling over 35,000 km
	- Polar regions are poorly served
	- Signal sending delay is substantial
- Circular/slightly elliptical orbit under 2000 km GEO: **LEO:** \sharp
	- Orbit period ranges from 1.5 to 2 hours 置
	- Diameter of coverage is about 8000 km \blacksquare
	- Round-trip signal propagation delay less than 置 20 ms
	- Maximum satellite visible time up to 20 min 軍
	- System must cope with large Doppler shifts \blacksquare
	- Atmospheric drag results in orbital 置 deterioration
	- Little LEOs: Frequencies below 1 GHz ; 5MHz of Bandwidth; Data rates up to 10 kbps…
		- Aimed at paging, tracking, and low-rate messaging

-Big LEOs: Frequencies above 1 GHz; Support data rates up to a few megabits per sec; Offer same services as little LEOs in addition to voice and positioning services

UNIVERSITY

Satellites…

- Circular orbit at an altitude in the range of 5000 to 12,000 km 耳
- Orbit period of 6 hours \blacksquare
- Diameter of coverage is 10,000 to 15,000 km **MEO:**
	- Round trip signal propagation delay less than 50 ms \blacksquare
	- Maximum satellite visible time is a few hours $\mathbb R$

NORTHWESTERN **UNIVERSITY**

Satellites and Networking

(b) Broadcast link

Capacity Management Schemes:

- Frequency division multiple access н (FDMA)
- Time division multiple access ш (TDMA)
- Code division multiple access T. (CDMA)

Example (FDMA):

-1200 voice-frequency (VF) voice channels -One 50-Mbps data stream -16 channels of 1.544 Mbps each -400 channels of 64 kbps each -600 channels of 40 kbps each -One analog video signal -Six to nine digital video signals

Satellites and Networking…

(b) Downlink