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The efficacy of data aggregation in sensor networks is a function of the degree of spatial correlation
in the sensed phenomenon. The recent literature has examined a variety of schemes that achieve
greater data aggregation by routing data with regard to the underlying spatial correlation. A
well known conclusion from these papers is that the nature of optimal routing with compression
depends on the correlation level. In this article we show the existence of a simple, practical, and
static correlation-unaware clustering scheme that satisfies a min-max near-optimality condition.
The implication for system design is that a static correlation-unaware scheme can perform as well
as sophisticated adaptive schemes for joint routing and compression.
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1. INTRODUCTION

In view of the severe energy constraints of sensor nodes, data aggregation
is widely accepted as an essential paradigm for energy-efficient routing in
sensor networks. For data-gathering applications in which data originates at
multiple correlated sources and is routed to a single sink, aggregation would
primarily involve in-network compression of the data. Such compression, and
its interaction with routing, has been studied in the literature before; prior work
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has examined distributed source coding techniques such as Slepian-Wolf cod-
ing [Cover and Thomas 1991; Pradhan and Ramchandran 1999], joint source
coding and routing techniques [Scaglione and Servetto 2005], and opportunis-
tic compression along the shortest path tree [Krishnamachari et al. 2002]. An
understanding of various routing schemes across the range of spatial correla-
tions is crucial and this problem has been addressed by several recent papers
[Pattem et al. 2004; Cristescu et al. 2004; Enachescu et al. 2004]. Cristescu
et al. have formalized the correlated data gathering problem and studied the
interaction between the correlation in the data measured at nodes in a net-
work and the transmission structure that is used to transport this data to the
sink.

In order to understand the space of interactions between routing and com-
pression, we study simplified models of three qualitatively different schemes. In
routing-driven compression data is routed through shortest paths to the sink,
with compression taking place opportunistically wherever these routes hap-
pen to overlap [Intanagonwiwat et al. 2002; Krishnamachari et al. 2002]. In
compression-driven routing the route is dictated in such a way as to compress
the data from all nodes sequentially—not necessarily along a shortest path to
the sink. Our analysis of these schemes shows that they each perform well when
there is low and high spatial correlation respectively. As an ideal performance
bound on joint routing-compression techniques, we consider distributed source
coding in which perfect source compression is done a priori at the sources using
complete knowledge of all correlations.

In order to obtain an application-independent abstraction for compression,
we use the joint entropy of sources as a measure of the uncorrelated data they
generate. An empirical approximation for the joint entropy of sources as a func-
tion of the distance between them is developed. A bit-hop metric is used to quan-
tify the total cost of joint routing with compression. Evaluation of the schemes
using these metrics leads naturally to a clustering approach for schemes that
perform well over the range of correlations.

We develop a simple scheme based on static, localized clustering that gen-
eralizes these techniques. Analysis shows that the nature of optimal routing
will depend on the number of nodes, level of correlation and also on where the
compression is effected: at the individual nodes or at intermediate aggrega-
tion points (cluster heads). Our main contribution is a surprising result that
there exists a near-optimal cluster size that performs well over a wide range
of spatial correlations. A min-max optimization metric for the near-optimal
performance is defined and a rigorous analysis of the solution is presented
for both 1-D (line) and 2-D (grid) network topologies. We show further that
this near-optimal size is in fact asymptotically optimal in the sense that, for
any constant correlation level, the ratio of the energy costs associated with
the near-optimal cluster size to those associated with the optimal cluster-
ing goes to one as the network size increases. Simulation experiments con-
firm that the results hold for more general topologies: 2-D random geometric
graphs and realistic wireless communication topology with lossy links, and
also for a continuous, Gaussian data model for the joint entropy with varying
quantization.
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From a system engineering perspective, this is a very desirable result be-
cause it eliminates the need for highly sophisticated compression-aware routing
algorithms that adapt to changing correlations in the environment (which may
even incur additional overhead for adaptation), and therefore simplifies the
overall system design.

2. ASSUMPTIONS AND METHODOLOGY

Our focus is on applications that involve continuous data gathering for large
scale and distributed physical phenomena using a dense wireless sensor net-
work where joint routing and compression techniques would be useful. An
example of this is the collection of data from a field of weather sensors. If
the nodes are densely deployed, the readings from nearby nodes are likely to
be highly correlated and hence contain redundancies because of the inherent
smoothness or continuity properties of the physical phenomenon.

To compare and evaluate different routing with compression schemes, we
will need a common metric. Our focus is on energy expenditure, and we have
therefore chosen to use the bit-hop metric. This metric counts the total number
of bit transmissions in the network for one round of data gathering from all
sources. Formally, let T = (V , E, ξT ) represent the directed aggregation tree (a
subgraph of the communication graph) corresponding to a particular routing
scheme with compression, which connects all sources to the sink. Associated
with each edge e = (u, v) is the expected number of bits be per cycle to be
transported over that edge in the tree. For edges emanating from sources that
are leaves on the tree, the bit count is the amount of data generated by a single
source. For edges emanating from aggregation points, the outgoing edge may
have a smaller bit count than the sum of bits on the incoming edges, due to
aggregation. For nodes that are neither sources nor aggregation points but act
solely as routers, the outgoing edge will contain the same number of bits as the
incoming edge. The bit-hop metric ξT is simply:

ξT =
∑
e∈E

be. (1)

There are two possible criticisms of this metric that we should address di-
rectly. The first is that the total transmissions may not capture the hot-spot en-
ergy usage of bottleneck nodes, typically near the sink. However, an alternative
metric that better captures hot-spot behavior is not necessarily relevant if the
a priori deployment and energy placement ensure that the bottlenecks are not
near the sink or if the sink changes over time. The second possible criticism
is that this does not incorporate reception costs explicitly. However, the use of
bit-hop metric is justified because it does in fact implicitly incorporate reception
costs. If every bit transmission incurs the same corresponding reception cost in
the network, the sum of these transmission and reception costs will be propor-
tional to the total number of bit-hops.

To quantify the bit-hop performance of a particular scheme, therefore, we
need to quantify the amount of information generated by sources and by the
aggregation points after compression. For this purpose we use the entropy H of a
source, which is a measure of the amount of information it originates [Cover and
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Fig. 1. Empirical data from the rainfall data-set and approximation for joint entropy of linearly
placed sources separated by different distances.

Thomas 1991]. In this article, we consider only lossless compression of data. In
order to characterize correlation in an application-independent manner, we use
the joint entropy of multiple sources to measure the total uncorrelated data they
originate. Theoretically, using entropy-coding techniques this is the maximum
possible lossless compression of the data from these sources. We now attempt to
construct a parsimonious model to capture the essential nature of joint entropy
of sources as a function of distance. The simplicity of this approximation model
enables the analysis presented in Sections 3 and 4.

In general, the extent of correlation in the data from different sources can be
expected to be a function of the distance between them. We used an empirical
data-set pertaining to rainfall1 [Widmann and Bretherton 1999] to examine the
amount of correlation in the readings of two sources placed at different distances
from each other. Since rainfall measurements are a continuous valued random
variable and hence would have infinite entropy, we present results obtained
from quantization. The range of values was normalized for a maximum value
of 100 and all readings binned into intervals of size 10. Figure 1 is a plot of the
average joint entropy of multiple sources as a function of inter source distance.

The figure shows a steeply rising convex curve that reaches saturation
quickly. This is expected since the inter source distance is large (in multiples

1This data-set consists of the daily rainfall precipitation for the pacific northwest region over a
period of 46 years. The final measurement points in the data-set formed a regular grid of 50 km ×
50 km regions over the entire region under study. Although this is considerably larger-scale than
the sensor networks of interest to us, we believe the use of such real physical measurements to
validate spatial correlation models is important.
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of 50 km). From the empirical curve, a suitable model for the average joint en-
tropy of two sources (H2) as a function of inter source distance d is obtained
as:

H2(d ) = H1 +
[
1 − 1(d

c + 1
)]

H1. (2)

Here c is a constant that characterizes the extent of spatial correlation in
the data. It is chosen such that when d = c, H2 = 3

2 H1. In other words, when
inter source distance d = c, the second source generates half the first node’s
amount in terms of uncorrelated data. In Figure 1, a value of c = 25 matches
the H2 curve well.

Finally, this leaves open the question of how to obtain a general expression for
the joint entropy of n sources at arbitrary locations. As we shall show later, this
is needed in order to study the performance of various strategies for combined
routing and compression. To this end, we now present a constructive technique
to calculate approximately the total amount of uncorrelated data generated by
a set of n nodes.

From Equation 2, it appears that on average, each new source contributes an
amount of uncorrelated data equal to [1− 1

( d
c +1)

]H1, where we take the d as the

minimum distance to an existing set of sources. This suggests a constructive
iterative technique to approximately calculate the total amount of uncorrelated
data generated by a set of n nodes:

(1) Initialize a set S1 = {v1}, where v1 is any node. We will denote by H(Si) the
joint entropy of nodes in set Si, where H(S1) = H1. Let V be the set of all
nodes.

(2) Iterate the following for i = 2 : n.
(a) Update the set by adding a node vi, where vi ∈ V \ Si−1 is the closest,

in terms of Euclidean distance, of the nodes not in Si−1 to any node in
Si−1: set Si = {Si−1, vi}.

(b) Let di be the shortest distance between vi and the set of nodes in Si−1.
Then calculate the joint entropy as H(Si) = H(Si−1) + [1 − 1

( di
c +1)

]H1.

(3) The final iteration yields H(Sn) as an approximation of Hn.

In the simple case when all nodes are located on a line equally spaced by a
distance d , this procedure would yield the expression:

Hn(d ) = H1 + (n − 1)
[
1 − 1(d

c + 1
)]

H1. (3)

That this closed-form expression provides a good approximation for a linear
scenario is validated by our measurements from the rainfall data set, as seen
in Figure 1. The curve for H3 was obtained by considering all sets of grid points
(p1, p2, p3) such that they lie in a straight line with the distance between two
adjacent points plotted on the x-axis. The curve for H4 was similarly obtained
using all sets of four points.
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2.1 Note on Heuristic Approximation

We note that the final approximation H(Sn) is guaranteed to be greater than the
true joint entropy H(v1, v2, . . . , vn). Thus it does represent a rate achievable by
lossless compression. The approximation roughly corresponds to a rate alloca-
tion of H(vi/ηvi ) at every node vi, where ηvi is the nearest neighbor of vi. A more
precise information-theoretic treatment in terms of the rate allocations at each
node is possible, for instance, as in Cristescu et al. [2004, 2006]. We relinquish
some rigor with the objective of gaining practical insight. This approach makes
the problem more tractable and is the basis for analysis in subsequent sections.

Another point of contention is the need for such a heuristic approach instead
of using a continuous data model and using analytical expressions for the joint
entropy for this model. In this regard, we note that (a) our model matches the
standard jointly Gaussian entropy model for low correlation (Appendix A.1.1),
and (b) since the standard expression is in covariance form, it cannot be used
for high correlation values, necessitating a reasonable approximation.

3. ROUTING SCHEMES

Given this framework, we can now evaluate the performance of different routing
schemes across a range of spatial correlations. We choose three qualitatively
different routing schemes; these schemes are simplified models of schemes that
have been proposed in the literature.

(1) Distributed Source Coding (DSC): If the sensor nodes have perfect knowl-
edge about their correlations, they can encode/compress data so as to avoid
transmitting redundant information. In this case, each source can send its
data to the sink along the shortest path possible without the need for in-
termediate aggregation. Since we ignore the cost of obtaining this global
knowledge, our model for DSC is very idealized and provides a baseline for
evaluating the other schemes.

(2) Routing Driven Compression (RDC): In this scheme, the sensor nodes do not
have any knowledge about their correlations and send data along the short-
est paths to the sink while allowing for opportunistic aggregation wherever
the paths overlap. Such shortest path tree aggregation techniques are de-
scribed, for example, in Intanagonwiwat et al. [2002] and Krishnamachari
et al. [2002].

(3) Compression Driven Routing (CDR): As in RDC, nodes have no knowledge
of the correlations but the data is aggregated close to the sources and ini-
tially routed so as to allow for maximum possible aggregation at each hop.
Eventually, this leads to the collection of data removed of all redundancy at
a central source from which it is sent to the sink along the shortest possi-
ble path. This model is motivated by the scheme in Scaglione and Servetto
[2005].

3.1 Comparison of the Schemes

Consider the arrangement of sensor nodes in a grid, where only the 2n − 1
nodes in the first column are sources. We assume that there are n1 hops on the
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Fig. 2. Illustration of routing for the three schemes: DSC, CDR, and RDC. Hi is the joint entropy
of i sources.

shortest path between the sources and the sink. For each of the three schemes,
the paths taken by data and the intermediate aggregation are shown in
Figure 2.

In our analysis, we ignore the costs associated with each compressing node
to learn the relevant correlations. This cost is particularly high in DSC, where
each node must learn the correlations with all other source nodes. However
the bit-hop cost still provides a useful metric for evaluating the performance of
the various schemes and allows us to treat DSC as the optimal policy providing
a lower-bound on the bit-hop metric.

Using the approximation formulae for joint entropy and the bit-hop metric
for energy, the expressions for the energy expenditure (E) for each scheme are
as follows.

For the idealized DSC scheme, each source is able to send exactly the right
amount of uncorrelated data, and each source can send the data along the
shortest path to the sink, so that:

EDSC = n1 H2n−1. (4)
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LEMMA 3.1. EDSC represents a lower bound on bit-hop costs for any possible
routing scheme with lossless compression.

PROOF. The total joint information of all (2n − 1) sources is H2n−1. As dis-
cussed before, no lossless compression scheme can reduce the total information
transmitted below this level. Each bit of this information must travel at least n1
hops to get from any source to the sink. Thus n1 H2n−1, the cost of the idealized
DSC scheme, represents a lower bound on all possible routing schemes with
lossless compression.

In the RDC scheme, the tree is as shown in Figure 2 (middle), with data being
compressed along the spine in the middle. It is possible to derive an expression
for this scenario:

ERDC = (n1 − n)H2n−1 + 2H1

n−1∑
i=1

(i) +
n−2∑
j=0

H2 j+1. (5)

For the CDR scheme, the data is compressed along the location of the sources,
and then sent together along the middle, as shown in Figure 2. It can be shown
that for this scenario:

ECDR = n1 H2n−1 + 2
n−1∑
i=1

Hi. (6)

These expressions, in conjunction with the expression for Hn presented ear-
lier, allow us to quantify the performance of each scheme. Figure 3 plots the
energy expenditure for the DSC, RDC, and CDR schemes as a function of the
correlation constant c, for different forms of the correlation function. For these
calculations, we assumed a grid with n1 = n = 53 and 2n − 1 = 105 sources.
From this figure it is clear that CDR approaches DSC and outperforms RDC for
higher values of c (high correlation) while RDC performance matches DSC and
outperforms CDR for low c (no correlation). This can be intuitively explained
by the tradeoff between compressing close to the sources and transporting in-
formation toward the sink. CDR places a greater emphasis on maximizing the
amount of compression close to the sources, at the expense of longer routes to
the sink, while RDC does the reverse. When there is no correlation in the data
(small c), no compression is possible and hence it is RDC that minimizes the
total bit-hop metric. When there is high correlation (large c), significant energy
gains can be realized by compressing as close to the sources as possible and
hence CDR performs better under these conditions.

Interestingly, it appears that neither RDC nor CDR perform well for interme-
diate correlation values. This suggests that in this range a hybrid scheme may
provide energy-efficient performance closer to the DSC curve. CDR and RDC
can be viewed as two extremes of a clustering scheme, with CDR having all data
sources form a single aggregation cluster before sending data towards the sink,
while RDC has each source acting as a separate cluster in itself. A hybrid scheme
would be one in which sources form small clusters and data is aggregated within
them at a cluster head, which then sends data to the sink along a shortest path.
This insight leads us to an examination of suitable clustering techniques.
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4. A GENERALIZED CLUSTERING SCHEME

The idea behind using clustering for data routing is to achieve a tradeoff be-
tween aggregating near the sources and making progress towards the sink. In
addition to factors like the number of nodes and position of the sink, the optimal
cluster size will also depend on the amount of correlation in the data originated
by the sources (quantified by the value of c). Generally, the amount of corre-
lation in the data is highest for sensor nodes located close to each other and
can be expected to decrease as the separation between nodes increases. Once
an optimal clustering based on correlations is obtained, aggregation of data is
required only for the sources within a cluster, after which data can be routed
to the sink without the need for further aggregation. As a consequence, none of
the scenarios considered henceforth will exactly resemble RDC.

4.1 Description of the Scheme

We now describe a simple, location-based clustering scheme. Given a sensor
field and a cluster size, nodes close to each other form clusters. The clusters
so formed remain static for the lifetime of the network. Within each cluster,
the data from each of the nodes is routed along a shortest path tree (SPT)
to a cluster head node. This node then sends the aggregated data from its
cluster to the sink along a multi-hop path with no intermediate aggregation.
This is illustrated in Figure 4. The intermediate nodes on the SPT may or
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may not perform aggregation. Data aggregation in the form of compression
is computationally intensive. Not all nodes in a network might be capable of
performing compression, either because it is too expensive for them to do so
or the delays involved are unacceptable. It is conceivable that there will be a
few high-power nodes or micro-servers [Hu et al. 2004] that will perform the
compression. Nodes form clusters around these nodes and route data to them.
In this case, data aggregation takes place only at the cluster head.

4.1.1 Metrics for Evaluation of the Scheme. Es(c) is defined as the energy
cost in bit-hops for correlation c and cluster size s. The optimal cluster size
sopt(c) minimizes the cost for a given c. Let E∗(c) = Esopt (c) represent the op-
timal energy cost for a given correlation c. For simplifying system design, it
is desirable to have a cluster size that performs close to the optimal over the
range of c values. We quantify the notion of being close to optimal by defining
a near-optimal cluster size sno as the value of s that minimizes the maximum
difference metric:

sno = arg min
s∈[1,n]

max
c∈[0,∞)

{Es(c) − E∗(c)}. (7)

In the following sections, we analyze the performance of the clustering
scheme for both 1-D and 2-D networks when aggregation is performed

—at intermediate nodes on the SPT, and
—only at the cluster-heads.
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4.2 1-D Analysis

We begin with an analysis of the energy costs of clustering for a setup involving
a linear array of sources to better understand the tradeoffs. Consider n source
nodes linearly placed with unit spacing (d = 1) on one side of a 2-D grid of
nodes, with the sink on the other side, and assuming the correlation model,
Hn = H1(1 + (n−1)

1+c ). We consider n
s clusters, each consisting of s nodes. Since

all sources have the same shortest hop distance to the sink, the position of
the cluster head within a cluster has no effect on the results. Within each
cluster, the data can either be compressed sequentially on the path to the cluster
head or only when it reaches the cluster head. The cluster head then sends the
compressed data along a shortest path involving D hops to the sink. The total
bit-hop cost for such a routing scheme is therefore

Es(c) = n
s

(
Eintra

s,c + Eextra
s,c

)
, (8)

where Eintra
s,c and Eextra

s,c are the bit-hop costs within each cluster and the bit-hop
costs for each cluster to send the aggregate information to the sink respectively.

4.2.1 Sequential Compression Along SPT to Cluster Head. At each hop
within the cluster, a node receives Hi bits, aggregates them with its own data
and transmits Hi+1 bits. This is done sequentially until the data reaches the
cluster head. We have,

Eintra
s,c =

s−1∑
i=1

Hi =
s−1∑
i=1

(
1 + i − 1

1 + c

)
H1

=
(

s − 1 + (s − 2)(s − 1)
2(1 + c)

)
H1.

Since the cluster heads get aggregated data from s sources and send it to the
sink using a shortest path of D hops,

Eextra
s,c = Hs · D =

(
1 + s − 1

1 + c

)
H1 · D

⇒ Es(c) = nH1

(
s − 1

s
+ (s − 2)(s − 1)

2s(1 + c)
+ D

s
+ (s − 1)D

s(1 + c)

)
. (9)

The optimum value of the cluster size sopt can be determined by setting the
derivative of this expression equal to zero. It can be shown that

sopt = 1, if c ≤ 1
2(D − 1)

=
√

2c(D − 1), if
1

2(D − 1)
< c <

n2

2(D − 1)

= n, if c ≥ n2

2(D − 1)
.

Note that sopt depends on the distance from the sources to the sink2 and the
degree of correlation c.

2It is, however, assumed that D ≥ n, so there is an implicit dependence on n.

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 24, Publication date: August 2008.



24:12 • S. Pattem et al.

10 10 10 10
0

10
1

10
2

10
3

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

correlation parameter in log scale log(c)

T
ra

n
si

m
is

si
o
n
 c

o
st

 E
  s

s = 1
s = 3
s = 7
s = 15
s = 35
s = 105 (CDR)
DSC
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Figure 5 shows how different cluster sizes perform across a range of corre-
lation levels, based on our analysis, for a set of 105 linearly placed nodes. As
expected, the small cluster sizes and large cluster sizes perform well at low and
high correlations respectively. However, it appears that an intermediate cluster
size near 15 would perform well across the whole range of correlation values.
The curve with s = 105 corresponds to CDR; the DSC curve is also plotted for
reference.

THEOREM 4.1. For Es(c) given by Equation 9, the near-optimal cluster size
sno defined by Equation 7 exists, and is given by

sno = �(min(
√

D, n)).

Proof is in Appendix A.2.2.

This is illustrated in Figure 6, in which the costs are plotted with respect
to the cluster sizes for a few different values of spatial correlation. The figure
clearly shows that although the optimal cluster size does increase with correla-
tion level, the near-optimal static cluster size performs very well across a range
of correlation values. In this figure, D = n = 105 and the near-optimal cluster
size obtained from Theorem 4.1, sno = 14 is indicated by the vertical line in the
plot. Intersections of the dotted lines and the nearest c curve with this vertical
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Fig. 6. Illustration of the existence of a static cluster for near-optimal performance across a range
of correlations. The sources are in a linear array and data is sequentially compressed along the
path to cluster heads.

line show the difference in energy cost between the near-optimal and optimal
solutions.

4.2.2 Compression at Cluster Head Only. In this case, each source within
a cluster sends data to the cluster head using a shortest path. There is no
aggregation before reaching the cluster head. We have,

Eintra
s,c =

s−1∑
i=1

i · H1 = s(s − 1)
2

H1

Eextra
s,c =

(
1 + s − 1

1 + c

)
H1 · D

⇒ Es(c) = nH1

(
s − 1

2
+ D

s
+ (s − 1)D

(s)(1 + c)

)
. (10)

It can be shown that

sopt = 1, if c ≤ 1
2D − 1

= n, if c >
n2

2D − n2
, 2D > n2

=
√

2Dc
c + 1

, else .
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Fig. 7. Performance with compression only at cluster head with nodes in a linear array(n = D =
105). Cluster sizes s = 5, 7 are close to optimal over the range of c.

Figure 7 shows that for a linear array of sources (with n = D = 105), the
performance for cluster sizes s = 5, 7 is close to optimal over the range of c. The
DSC curve is plotted for reference.

THEOREM 4.2. For Es(c) given by Equation 10, the near-optimal cluster size
sno defined by Equation 7 exists, and is given by

sno = �(min(
√

D, n)).

Proof is in Appendix A.2.4.

The existence of a near-optimal cluster size is illustrated in Figure 8. The
performance of cluster sizes near s = 7 is close to optimal over the range of c
values.

4.3 2-D Analysis

Consider a 2-D network in which N = n2 nodes are placed on an n × n unit
grid and are divided into clusters of size s × s. We assume that each node
can communicate directly only with its 8 immediate neighbors. The routing
pattern within a cluster and from the cluster-heads to the sink is similar and is
illustrated in Figure 9. Note that using the iterative approximation described
in Section 3, the joint entropy of k adjacent3 nodes on a grid is the same as the

3Nodes forming a contiguous set.
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Fig. 8. Illustration of the near-optimal cluster size with compression only at cluster head with

nodes in a linear array. The performance of cluster sizes near s = 7(≈
√

105
2 ) is close to optimal over

the range of c values.

joint entropy of k sensors lying on a straight line. Figure 9(a) illustrates this
along the diagonal.

The results for the linear array of sources do not extend directly to a two-
dimensional arrangement where every node is both a source and a router. In the
1-D case, the optimal aggregation tree is different from the shortest path tree
(except for the case with zero correlation). This is because moving towards the
sources allows greater compression than moving towards the sink. In the 2-D
case however, there are opportunities for compression in all directions. Hence,
it is always possible to achieve compression while making progress towards the
sink.

4.3.1 Opportunistic Compression Along SPT to Cluster Head. According
to the approximation we have been using for the joint entropy, the contribution
of a node v is H(v/ηv), where ηv is the nearest neighbor of v. If we assume that
H(v/ηv) is the fixed rate allocation for every node v, it follows4 that a network-
wide SPT is the optimal routing structure. In other words, the optimal cluster
size is s = n for all values of correlation parameter c. There is no incentive for
data to deviate from a shortest path to the sink. The result is established more
precisely in the following lemma.

4See Cristescu et al. [2004] for a formal proof.
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Fig. 9. Routing in a 2-D grid arrangement. (a) Calculation of joint entropy. Using the iterative
approximation joint entropy of k nodes forming a contiguous set is the same as the joint entropy of
k sensors lying on a straight line. This is illustrated along the diagonal. (b) Intra-cluster, shortest
path from source to cluster head routing with compression only at cluster head. (c) Inter-cluster,
shortest path routing from cluster heads to sink. There is no compression enroute to sink.

LEMMA 4.3. For a 2-D grid with opportunistic compression along an SPT
to cluster head, the optimal cluster size is s = n for any value of correlation
parameter c ∈ [0, ∞].

Proof is in Appendix A.2.

It should be noted that the optimality of such a network-wide SPT is contin-
gent on two of our assumptions:

—a grid topology;
—routing within clusters is along an SPT.
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Results for general graph topologies are presented in von Rickenbach
and Wattenhofer [2004] and Cristescu et al. [2004]. These are discussed in
Section 6 (Related work).

4.3.2 Compression at Cluster Head Only. When compression is possible
only at cluster heads, there is a definite tradeoff in progress towards the sink
and compression at intermediate points. Since there is no compression before
reaching, and after leaving, the cluster-heads, shortest-path routing is optimal
within clusters and from cluster-heads to sink (Figures 9(b), and (c)). Let Es(c)
be the total cost for a network with cluster size s×s and correlation parameter c.
Eintra

s and Eextra
s are defined as the combined intracluster costs and the overall

cost for routing from cluster heads to the sink respectively. From Figure 9, a
node at (i, j ) will take max{i, j } hops to reach the cluster head at (0, 0). Since
there are ( n

s )2 clusters, we have

Eintra
s,c =

(
n
s

)2 s−1∑
i=0

s−1∑
j=0

max{i, j }H1 =
(

n
s

)2( s−1∑
i=0

i∑
j=0

i +
s−1∑
i=0

s−1∑
j=i+1

j
)

H1

=
(

n
s

)2( s−1∑
i=0

i(i + 1) +
s−1∑
i=0

(
(i + 1) + (i + 2) + · · · + (s − 1)

))
H1

=
(

n
s

)2( s−1∑
i=0

i(i + 1) +
s−1∑
i=0

(
(s − 1)s

2
− i(i + 1)

2

))
H1

= n2

6s
(s − 1)(4s + 1)H1. (11)

Now, the shortest route between adjacent cluster-heads is s hops. Hence,

Eextra
s,c =

n
s −1∑
i=0

n
s −1∑
j=0

max{s · i, s · j }Hs2 = s

n
s −1∑
i=0

n
s −1∑
j=0

max{i, j }
(

1 + s2 − 1
1 + c

)
H1

= n
6

(
n
s

− 1
)(

4n
s

+ 1
)(

1 + s2 − 1
1 + c

)
H1. (12)

[using the expression for
∑ ∑

max{i, j } from Equation 11]

Es(c) = Eintra
s,c + Eextra

s,c

=
[

n2

6s
(s − 1)(4s + 1) + n

6

(
n
s

− 1
)(

4n
s

+ 1
)(

1 + s2 − 1
1 + c

)]
H1. (13)

Figure 10 shows the performance of the scheme for various cluster sizes for
a 1000 × 1000 network. While the optimal cluster size depends on the value of
c, we again find that there are certain intermediate cluster sizes (s = 5, 10, 25)
that perform near optimally over a wide range of spatial correlations.

It can be shown (derivation in Appendix A.3.2) that

sopt(c) =
(

8c
4c + 1

n
) 1

3

+ o(n
1
3 ).
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Fig. 10. Comparison of the performance of various cluster sizes for a network with 106 nodes on a
1000x1000 grid when compression is possible only at cluster heads. The performance for s = 5, 10
is observed to be close to optimal over the range of c values.

THEOREM 4.4. For Es(c) given by Equation 13, the near-optimal cluster size

sno = �(n
1
3 )(≈0.6847n

1
3 ).

Proof is in Appendix A.3.4.

The number of nodes in the near-optimal cluster is Nno = �(n
2
3 ) = �(N

1
3 ).

Figure 11 illustrates the existence of the near-optimal cluster size for a net-
work of 106 nodes on a 1000 × 1000 grid. Clearly, the transmission cost with
cluster side values near s = 7(=�.6487n

1
3 �) is quite close to the optimal for a

large range of correlation coefficient c values.

5. SIMULATION RESULTS

The analysis in Section 4 is based on simple and restricted communication,
topology, and joint entropy models. To verify the robustness of the conclusions
from analysis, we present results from extensive simulation experiments with
more general models. As before, the network is deployed in an N × N area
partitioned into grids of size s × s, for s ∈ [1, N ]. All nodes located within the
same grid form a cluster.
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Fig. 11. Illustration of the existence of a near-optimal cluster size for a 2D network. The network
size is n × n = 1000 × 1000 and compression is possible only at cluster heads. The performance of

cluster side values near s = .6487n
1
3 is quite close to optimal for all values of c ranging from 0.0001

to 10000.

5.1 Communication and Topology Models

We consider more general communication and topology models, while using
the same entropy model as in the analysis. Nodes are deployed uniformly at
random within the network area. Each node is assumed to transmit 1 bit of data.
The joint entropy of nodes within the cluster is calculated using the iterative,
approximation technique described in Section 2.

5.1.1 Random Geometric Graphs. In this model, all nodes that are within
the communication radius can communicate with each other over ideal lossless
links. Since each link has a unit cost, the routing cost is calculated as:

intra-cluster cost = ∑
all nodes in cluster (node depth in cluster SPT)

extra-cluster cost = ∑
all clusters in network (cluster-head depth in network SPT) ·

(cluster joint entropy)
total cost = intracluster cost + extra-cluster cost.

The simulation parameters are as follows:

—network sizes 24 m × 24 m, 84 m × 84 m, 240 m × 240 m
—density of deployment = 1 node/m2

—communication radius = 3m
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Fig. 12. Random geometric graph topology. Performance of the clustering with density = 1
node/m2, communication radius = 3 m for network of size (a) 24 × 24 (b) 84 × 84 (c) 200 × 200.
Near-optimal cluster sizes are (a) 3,4; (b) 4,7; (c) 8,10.

Figures 12 (a), (b), and (c) show the performance of the clustering for the
network sizes considered. As predicted by the analysis, for a network of N
nodes, N

1
3 is a good estimate of the near-optimal cluster size.

5.1.2 Realistic Wireless Communication Model. We consider the model
for lossy, low power wireless links proposed in Zuniga and Krishnamachari
[2004a]. Link costs are the average number of transmissions required for a
successful transfer and these are used as weights for obtaining the shortest-
path tree. The routing cost is calculated as:

intracluster cost = ∑
all nodes in cluster (node cost in cluster SPT)

extra-cluster = ∑
all clusters in network(cluster head cost in network SPT) · (cluster joint

entropy).

The authors have made code available online for a topology generator
based on the model [Zuniga and Krishnamachari 2004b]. The parameters
used in the simulations are as follows:

—network size = 48 m × 48 m , density of deployment = 0.25 nodes/m2;
—random node placement;
—NCSFK modulation, Manchester encoding;
—PREAMBLE LENGTH = 2, FRAME LENGTH = 50;
—NOISE FLOOR = −105.0; Power levels: −3 dB, −7 dB, and −10 dB.

Figures 13 (a), (b), and (c) show the performance of the clustering for the
different power levels. For lower power, there is an increase in the routing cost
since links become more lossy. However, since proximity relationships between
nodes do not change drastically, the relative routing costs for different cluster
sizes remain similar.

5.2 Joint Entropy Models

We now consider more general models for the joint entropy of sources while
using the realistic lossy link model from Section 5.1.2. The routing cost is
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Fig. 13. Realistic wireless communication topology. Performance of clustering in 48 m × 48 m
network with density = .25 nodes/m2 for power level (a) −3dB; (b) −7dB; (c) −10dB. Cluster sizes
6 and 8 are near-optimal.
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Fig. 14. (a) Example forms of joint entropy functions for two sources. The entropy of each source
is normalized to 1 unit. The convex and linear curves are clipped when the joint entropy equals the
sum of the individual entropies. The curves shown are for correlation parameter c = 2. Performance
of clustering in 72 m × 72 m network with density = .25 nodes/m2 for (b) linear model; (c) convex
model of joint topology. Cluster size 6 is near-optimal.

calculated using the same equations; simulations are performed with power
level of −3 dB; all other parameters remain the same.

5.2.1 Linear and Convex Functions of Distance. In the empirically ob-
tained model, the joint entropy is a concave function of the distance between
sources. We also look at a linear function, for which

H2(d ) = H1 + min
(

1,
d
c

)
· H1,

and a convex function, for which

H2(d ) = H1 + min
(

1,
d2

c2

)
· H1.

Figure 14 (a) illustrates the three forms of joint entropy functions for two
sources. The entropy of each source is normalized to 1 unit. The convex
and linear curves are clipped when the joint entropy equals the sum of the
individual entropies. Figures 14 (b) and (c) show the performance of clustering.

5.2.2 Continuous Gaussian Data Model. In order to verify that the re-
sults from analysis and all earlier simulations are not artifacts of the simple
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approximation models for joint entropy, we now consider a continuous, jointly
Gaussian data model and use its entropy as the metric for uncorrelated data in
the routing cost calculations. The data is assumed to have a zero-mean jointly
Gaussian distribution, X ∼ N N (0, K ), with unit variances σii = 1:

f (X ) = 1√
(2π )|K | 1

2

e− 1
2 (X )T K −1(X ),

where K is the covariance matrix of X , with elements depending on the distance
between the corresponding nodes and the degree of correlation, Kij = e− di j

c ,
where dij is the distance between nodes i and j , and c is the correlation pa-
rameter. For this distribution and with quantization step size δ, entropy of a
single source is [Cover and Thomas 1991]:

H1 = 1
2

log2(2πe) − log2(δ),

and joint entropy of n sources is:

Hn = 1
2

log2((2πe)n|K |) − nlog2(δ).

Since |K | becomes singular for large c values, we clip Hn by using

max
{

1
2

log2(2πe),
1
2

log2((2πe)n|K |)
}

− nlog2(δ).

Figures 15 (a), (b), and (c) show performance of clustering for quantization
step δ = 1, 0.5, and 0.05. The cluster sizes s = 6, and 8 are near-optimal. In
Figures 15 (d), (e), and (f), the same curves are presented but the transmission
cost is normalized to make the highest value equal to 1. For lower values of δ,
the quantization cost dominates and the gains from removing intersource corre-
lations in data are diminished. Accordingly, the relative gains from optimizing
cluster size are also reduced.

5.3 Summary of Simulation Results

Overall, the results presented in this section show that the basic conclusions
from the analysis hold even when the limiting assumptions of the analysis
regarding node placement, communication link quality, and exact form of the
correlation model, quantization, are relaxed. In all cases, we observe the exis-
tence of small cluster-sizes that provide near-optimal performance over a wide
range of correlation settings.

6. RELATED WORK

Estrin et al. [1999] first discussed the ideas of data-centric routing and in-
network aggregation for scalable and efficient designs for sensor networks.
LEACH [Heinzelman et al. 2000] was an early proposal for a randomized
clustering protocol that demonstrated some of the gains of in-network com-
pression and its relation to routing. Other early work developed models and
presented analysis of simple aggregation (duplicate suppression, min, max)
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Fig. 15. Performance of clustering in 48 m × 48 m network with density = .25 nodes/m2 with a
continuous, jointly Gaussian data model and quatization step (a) δ = 1; (b) δ = 0.5; (c) δ = 0.05.
Cluster sizes 6 and 8 are near-optimal. (d), (e), and (f) show normalized curves corresponding to
(a), (b), and (c) respectively. For lower values of δ, quantization costs dominate, reducing the gains
from optimizing for removal of correlations.

[Krishnamachari et al. 2002]; greedy aggregation based on directed diffusion
[Intanagonwiwat et al. 2002, 2003]; explored the use of data aggregation op-
erators to optimize the performance of sensor database-type queries [Madden
et al. 2002]; and the possibility of adapting the aggregation routing structures
to data content and availability in the network [Bonfils and Bonnet 2003].
Krishnamachari et al. [2002] studied the effects of network topology and the na-
ture of optimal routing for simple aggregation. The scheme described as routing-
driven compression (RDC) in our analysis is inspired by this work.

In this article, we consider compression of correlated sources as the princi-
pal form of data aggregation employed in the network. This is the approach
taken by several works with an information-theoretic perspective. Distributed
source coding (which we refer to as DSC) such as Slepian-Wolf coding [Cover
and Thomas 1991] and DISCUS [Pradhan and Ramchandran 1999] suggest
mechanisms to compress the content at the original sources in a distributed
manner without explicit routing-based aggregation. However the implemen-
tation of DSC in a practical setting is still an open problem and likely to in-
cur significant additional costs since it requires the complete knowledge of all
source correlations a priori at each source. Work by Scaglione and Servetto
[2002, 2005] was the first to explicitly consider the problem of joint routing and
compression. Using the joint entropy of sources as the data metric, the network
broadcast problem in multi-hop networks is claimed to be feasible by adapt-
ing routing for compression within localized partitions (or clusters), regardless
of network size. This result is disputed by work that showed the per sensor
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capacity asymptotically goes to zero for the same problem [Duarte-Melo and
Liu 2003; Marco et al. 2003]. Along with approaching the problem in differ-
ent ways, a fundamental contrast is that while Marco et al. [2003] account for
wireless interference, Scaglione and Servetto [2002, 2005] ignore it. Our work
assumes that data rates are well below the network capacity and the essential
conclusions are shown to hold for large but finite sized networks. We explore the
idea of a compression-driven routing (CDR) scheme, as described by Scaglione
and Servetto to be useful for high-correlation scenarios.

Our analysis of the representative routing schemes is based on using an
empirically motivated model for the joint entropy as a function of intersource
distances [Pattem et al. 2004] and shows that there exist efficient correlation in-
dependent routing structures. Cristescu et al. [2004] formalized the correlated
data gathering problem and the need for jointly optimizing the coding rate at
nodes and routing structures. The authors provide analysis of two strategies:
(a) the Slepian-Wolf or DSC model, for which the optimal coding is complex
(needs global knowledge of correlations) and optimal routing is simple (always
along a shortest path tree), and (b) a joint entropy coding model with explicit
communication for which coding is simple and optimizing routing structure is
difficult. For the Slepian-Wolf model, a closed form solution is derived while for
the explicit communication case it is shown that the optimization problem is
NP-complete and approximation algorithms are presented. Our approach is to
simplify the optimization for the explicit communication case by using the em-
pirical model for joint entropy. The optimal routing structure is then analyzed
under this approximation. The analysis demonstrates that the optimal routing
structure also depends on where the actual data compression is performed; at
each individual node or at micro-servers acting as intermediate data collection
points. von Rickenbach and Wattenhofer [2004] differentiate “self-coding” and
“foreign-coding”. In self-coding, a node uses data from other nodes to compress
its own data, while in foreign-coding, a node can also compress data from other
nodes. With foreign-coding, it is shown that energy-optimal data gathering in-
volves building a directed minimum spanning tree (DMST). Self-coding corre-
sponds to the explicit communication model described by Cristescu et al. [2004],
for which the optimal solution is NP-complete. Good solutions are expected to
be tradeoffs between a shortest path tree (SPT) and a traveling salesman path
(TSP). Both these works assume that the data is compressed only once, after
which it is decompressed at the sink. Recently proposed techniques [Ciancio
and Ortega 2005; Ciancio et al. 2006] allow compression at several hops, poten-
tially leading to greater reductions in transported data. Nonhomogeneous net-
works [Hu et al. 2004] might allow routing with compression while extending
the network lifetime. With some highly capable nodes acting as intermediate
cluster-heads, sensor nodes do not need to expend their energy on compression.
Adapting and optimizing Slepian-Wolf coding for a clustered network has been
studied recently [Wang et al. 2007].

In closely related work, [Enachescu et al. 2004] presents a randomized al-
gorithm that is a constant factor approximation (in expectation) to the opti-
mum aggregation tree, simultaneously for all correlation parameters. A notion
of correlation is introduced in which the information gathered by a sensor is
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proportional to the area it covers and the aggregate information generated by
a set of sensors is the total area they cover. The performance of aggregation
under an arbitrary, general model is considered by Goel and Estrin [2003]. Zhu
et al. [2005] have shown that under many network scenarios, a shortest path
tree has performance that is comparable to an optimal correlation aware rout-
ing structure. While Goel and Estrin take a more general view of aggregation
functions rather than as compression of spatially correlated sources, and Zhu
et al. use a different model of compression, our finding that there exists a near-
optimal clustering scheme that performs well for a wide range of correlations,
is in keeping with the results presented in these works.

While most existing work assumes that nodes that are closest to each other
have the most correlated data, Dang et al. [2007] have recently proposed com-
pression over a logical mapping of nodes based on their data content, inde-
pendent of locations. None of this work, including this article, considers the
practical details of how compression is achieved and the accompanying cost
for the required operations. Ciancio and Ortega [2005] have developed a dis-
tributed scheme for removing spatial correlations using wavelet transforms via
lifting steps. Follow-up work has studied optimization of the choice of wavelet
decomposition levels at nodes in conjunction with the routing [Ciancio et al.
2006]. Results show how practical compression schemes have to adapt to the
routing, and that network topology is a deciding factor in the choice of routing
scheme. An improved transform, better suited for 2D topologies, has also been
developed [Shen and Ortega 2008a, 2008b]. Further work is needed on devel-
oping practical compression schemes for sensor networks and evaluating them
on testbed implementations [Lee et al. 2007].

7. CONCLUSION

We study the correlated data gathering problem in sensor networks using an
empirically obtained approximation for the joint entropy of sources. We present
analysis of the optimal routing structure under this approximation. This anal-
ysis leads naturally to a clustering approach for schemes that perform well
in terms of energy-efficiency, over the range of correlations. The optimal clus-
tering depends on the level of correlation and also on where the actual data
compression is performed; at each individual node, or at intermediate data
collection points, or cluster heads. Remarkably, however, there exists a static,
near-optimal cluster size that performs well over the range of correlations. The
notion of near-optimality is formulated as a min-max optimization problem
and rigorous analysis of the solution is presented for both 1-D and 2-D network
topologies. For a linear arrangement of N sources, the near-optimal cluster size
is �(

√
D) irrespective of where compression occurs, where D(≥N , O(N 2)) is the

shortest hop distance of each source to the sink. For a 2-D grid deployment, with
N sources and unit density, a network-wide shortest path tree is optimal if every
node compresses its data using side information from its neighbors. If compres-
sion is possible only at cluster-heads, a �(N

1
6 ) cluster size is shown to be near-

optimal. The robustness of the conclusions from analysis is established using
extensive simulations with more general communication and entropy models.

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 24, Publication date: August 2008.



24:26 • S. Pattem et al.

The practical implication of these results for sensor network data gathering
is that a simple, static cluster-based system design can perform as well as
sophisticated adaptive schemes for joint routing and compression.

APPENDIX

A.1 Continuous Gaussian Model

A.1.1 Assuming Non-singular Covariance Matrix. Assume a zero-mean
jointly Gaussian bi-variate distribution X ∼ N 2(0, K ), with unit variances
σii = 1:

f (X ) = 1√
(2π )|K | 1

2

e− 1
2 (X )T K −1(X ),

where K is the covariance matrix of X , with Kij =
√

c
c+dij

, where dij is the

distance between nodes i and j , and c is the correlation parameter. Entropy of
each source is given by:

H1 = 1
2

log2(2πe).

The joint entropy is given by:

H2 = 1
2

log2((2πe)2|K |) = 1
2

log2

(
(2πe)2

(
1 − c

c + d

))

= 1
2

log2(2πe)2 + 1
2

log2

(
1 − c

c + d

)

≈ log2(2πe) + 1
2

log2e ·
(

− c
c + d

)
for small c

= 2H1 − log2e
2

(
c

c + d

)

= H1 + H1

(
1 − α

d
c + 1

)
for α = log2(e)

log2(2πe)
.

A.1.2 With Singular Covariance Matrix. For an N -dimensional Gaussian
process with a singular covariance matrix K having rank ψ(K ) < N , the joint
density of the samples can be expressed as the product of the densities of an
auxiliary set of independent Gaussian random variables with variance equal to
the non-zero eigenvalues of K (also called principal components) whose number
is equal to ψ(K ), and a set of N − ψ(K ) Dirac delta functions [Scaglione and
Servetto 2005]. Consequently, if we denote by |K |+ the product of the non-
zero eigenvalues and by ψ(K ) the rank of K , the joint entropy of a Gaussian
multivariate density can be, in general, written as:

HN = 1
2

log2
(
(2πe)ψ(K )|K |+)

.
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With Kij =
√

c
c+dij

, K becomes singular for c → ∞, with rank 1 and the

single eigenvalue = 1, to give:

HN = 1
2

log2(2πe) = H1.

While it is clear that the joint entropy will converge to that of a single source
for high correlation, this does not give us a tractable expression for HN in the
high correlation region.

A.2 1D Analysis

A.2.1 . The following lemma is required for proving Theorem 4.1.

LEMMA A.1. To solve the optimization problem in Equation 7 for Es(c) given
by Equation 9 it suffices to find s = sno such that

Esno (0) − E∗(0) = Esno (∞) − E∗(∞). (14)

PROOF. We first show that for any arbitrary s, this difference is maximum
at one of the two extremes (at c = 0 and c → ∞). Let

Ed
s (c) = Es(c) − E∗(c) = Es(c) − Esopt (c)

= nH1
(s − sopt)

(
s · sopt − 2c(D − 1)

)
2s · sopt(1 + c)

∂Ed
s (c)
∂c

= −nH1
(s − 1)

(
s + 2(D − 1)

)
2s(1 + c)2

, if c ≤ 1
2(D − 1)

= −nH1

(
s − √

2c(D − 1)
)(

s +
√

2(D−1)
c

)
2s(1 + c)2

, if
1

2(D − 1)
< c <

n2

2(D − 1)

= −nH1
(s − n)

(
s · n + 2(D − 1)

)
2s · n(1 + c)2

, if c ≥ n2

2(D − 1)
.

Ed
s (c) and its derivative vanish for the same values of c and since Ed

s (c) is
non-negative, the minimum is achieved at these values of c.

The derivative is continuous for all s ∈ [1, n], and

—for a particular value of s ∈ (1, n), it is zero only for one value of c;
—for s = 1, it is zero only for c ∈ [0, 1

2(D−1) ];

—for s = n, it is zero only for c ∈ [ n2

2(D−1) , ∞).

From the non-negativity of Ed
s (c) and these properties of its derivative, we

can conclude that:

—for s ∈ (1, n), Ed
s (c) is convex;

—for s = 1, it is monotonously increasing;
—for s = n, it is monotonously decreasing.
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This implies that Ed
s (c) is maximum either for c = 0 or c = ∞, and Equation

(7) reduces to

min
s∈[1,n]

max(Es(0) − E∗(0), Es(∞) − E∗(∞)). (15)

From Equation (9), we can derive the following expressions for energy costs of
clustering schemes for the two extreme correlation values:

Es(0) = nH1

(
s − 1

2
+ D

)
E∗(0) = nH1 D

Es(∞) = nH1

(
1 + D − 1

s

)

E∗(∞) = nH1

(
1 + D − 1

n

)
. (16)

Substituting Equation (16) in Equation (15) and disregarding common fac-
tors, we obtain:

min
s∈[1,n]

max
(

s − 1
2

,
D − 1

s
− D − 1

n

)
. (17)

Let f1(s) = s−1
2 , f2(s) = D−1

s − D−1
n . We have

max
s=1

( f1, f2) = f2(1)

max
s=n

( f1, f2) = f1(n).

For s ∈ (1, n), f1, and f2 are continuous, f1 is increasing and f2 is decreasing.
Therefore, max( f1, f2) achieves its minimum for s = sno such that

f1(sno) = f2(sno)
i.e. Esno (0) − E∗(0) = Esno (∞) − E∗(∞).

A.2.2

PROOF OF THEOREM 4.1. Solving for f1(sno) = f2(sno), we get

sno − 1
2

= D − 1
sno

− D − 1
n

⇒ s2
no +

(
2(D − 1)

n
− 1

)
sno − 2(D − 1) = 0

⇒ sno =
√

2(D − 1) +
(

D − 1
n

− 1
2

)2

−
(

D − 1
n

− 1
2

)

= �(min(
√

D, n)).

A.2.3 . The following lemma is required for proving Theorem 4.2.

LEMMA A.2. The near-optimal cluster size s = sno for Es(c) given by Equation
10 satisfies the condition

Esno (0) − E∗(0) = Esno (∞) − E∗(∞).
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PROOF. The proof is similar to proof of Lemma A.1 with

f1(s) = Es(0) − E∗(0)
nH1

= s − 1
2

, and

f2(s) = Es(∞) − E∗(∞)
nH1

= s
2

+ D
s

−
√

2D if 2D ≤ n2

= s − n
2

+ D
s

− D
n

else.

A.2.4

PROOF OF THEOREM 4.2. Using Lemma A.2 and solving

Esno (0) − E∗(0) = Esno (∞) − E∗(∞)

for Es(c) given by Equation 10, we get

sno = 2D

2
√

2D − 1

(
≈

√
D
2

)
if 2D < n2

= 2Dn
2D + n(n − 1)

else.

It can be verified that

sno = �(
√

D) if D = o(n2)
= n if D = �(n2).

A.3 2D Analysis

A.3.1

PROOF OF LEMMA 4.3. Consider a cluster of size sxs. The routing within the
cluster is as shown in Figure 9a and routing from cluster head to sink is as
shown in Figure 9b. The routing costs are obtained as follows:

Eintra
s,c =

(
n
s

)2 s−1∑
i=1

(
2(s − i)Hi + Hi2

)

=
(

n
s

)2 s−1∑
i=1

(
2(s − i)

(
1 + i − 1

1 + c

)
H1 +

(
1 + i2 − 1

1 + c

)
H1

)

=
(

n
s

)2

(s − 1)
(

s + 1 + (s − 2)(4s + 3)
6(1 + c)

)
H1

Eextra
s,c =

n
s −1∑
i=0

n
s −1∑
j=0

max{s · i, s · j }Hs2

= s

( n
s −1∑
i=0

i∑
j=0

i +
n
s −1∑
i=0

n
s −1∑

j=i+1

j

)(
1 + s2 − 1

1 + c

)
H1

= n
6

(
n
s

− 1
)(

4n
s

+ 1
)(

1 + s2 − 1
1 + c

)
H1.
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The total cost is

Es(c) = Eintra
s,c + Eextra

s,c .

The routing cost for a network-wide SPT (with s = n) is ,

En(c) = Eintra
n,c + 0 = (n − 1)

(
n + 1 + (n − 2)(4n + 3)

6(1 + c)

)
H1.

Now for any s < n and any value of c consider the difference:

Es(c) − En(c)

= n
6(1 + c)

((
ns − n

s
− s2 + 1

)
+ c

s2

(
4n2 − 3ns − s2 − 6n + 6s2

n

))
. (18)

It can be verified that the two terms:

ns − n
s

− s2 + 1 and 4n2 − 3ns − s2 − 6n + 6s2

n
are positive for any value of s < n. Hence the difference in Equation 18 is
always positive. This implies that for all values of c ∈ [0, ∞], Es(c) is minimum
for s = n.

A.3.2 Derivation of Optimal Cluster Size. Setting the partial derivative of
Es(c) with respect to s to zero,

∂Es(c)
∂s

= n
6(c + 1)

(
− 2s + (4c + 1)n + (c − 2)

n
s2

− 8c
n2

s3

)
H1 = 0

⇒ −2s3 + ns2 + n = 0, if c = 0
⇒ −2s4 + (4c + 1)ns3 + (c − 2)ns − 8cn2 = 0, if c �= 0. (19)

Differentiating again with respect to s

∂E2
s(c)

∂2s
= −

(
2n
s2

+ 2
)

H1, if c = 0 (20)

= n
3(c + 1)s4

(12cn2 − s4 − (c − 2)ns)H1, if c �= 0. (21)

If c = 0, the second derivative in Equation 20 is always negative and hence
the minimum is achieved at the two extremities s = 1 and s = n. Therefore,

sopt(0) = {1, n}. (22)

—If c > 0, for s = o(n
1
2 ), s4 = o(n2) and (c − 2)ns = o(n2). Solving Equation 19

with this constraint,
(4c + 1)ns3 − 8cn2 + o(n2) = 0

⇒ sopt(c) =
(

8c
4c + 1

n
) 1

3

+ o(n
1
3 ). (23)

It can be verified that a minimum is achieved since the second derivative in
Equation 21 is positive for this value of s.

—If c > 0, for s = �(n
1
2 ), it can be verified that Equation 19 has no solution for

s ≤ n.
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A.3.3

LEMMA A.3. The near-optimal cluster size s = sno for Es(c) given by Equation
13 satisfies the condition:

Esno (0) − E∗(0) = Esno (∞) − E∗(∞).

The proof is similar to proof of Lemma A.1 with

f1(s) = Es(0) − E∗(0)
n
6 H1

− n
s

(s − 1)(4s + 1)

= −s2 − 3ns + 3n + 1, and

f2(s) = Es(∞) − E∗(∞)
n
6 H1

− n
s

(s − 1)(4s + 1)

= −4n2

s2
− 3n

s
− 6 · 2

1
3 n

4
3 + 3n + 2 · 2

2
3 n

2
3 .

A.3.4

PROOF OF THEOREM 4.4. From Equations 22 and 23, sopt(0) = 1, n and
sopt(∞) → (2n)

1
3 .

Using Lemma A.3, the near-optimal cluster size s = sno satisfies:

Es(0) − E∗(0) = Es(∞) − E∗(∞)

⇒
[

n2

6s
(s − 1)(4s + 1) + n

6

(
n
s

− 1
)(

4n
s

+ 1
)

s2
]

−
[

n
6

(n − 1)(4n + 1)
]

=
[

n2

6s
(s − 1)(4s + 1) + n

6

(
n
s

− 1
)(

4n
s

+ 1
)]

−
[

n2

6(2n)
1
3

(
(2n)

1
3 − 1

)(
4(2n)

1
3 + 1

) + n
6

(
n

(2n)
1
3

− 1
)(

4n

(2n)
1
3

+ 1
)]

. (24)

Rearranging Equation 24 and factoring out n
6s2 , we get the condition:

s4 + 3ns3 − (6 · 2
1
3 n

4
3 + 3n + 2)s2 − 3ns + 4n2 + o(n2) = 0. (25)

Since s4 = o(ns3), ns = o(n2), by factoring out n, Equation 25 reduces to:

3s3 − 6 · 2
1
3 n

1
3 s2 + 4n + o(s3) + o(n) = 0. (26)

It can be verified that Equation 26 has only one non negative solution,

sno = 0.6487n
1
3 + o(n

1
3 ). (27)
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