
Rumor Routing Algorithm For Sensor Networks
David Braginsky

University of California, Los Angeles
Computer Science Department, UCLA,

LA CA 90095-1596

daveey@lecs.cs.ucla.edu

 Deborah Estrin
University of California, Los Angeles

Computer Science Department, UCLA,
LA CA 90095-1596

destrin@lecs.cs.ucla.edu

ABSTRACT
Advances in micro-sensor and radio technology will enable small
but smart sensors to be deployed for a wide range of
environmental monitoring applications. In order to constrain
communication overhead, dense sensor networks call for new and
highly efficient methods for distributing queries to nodes that
have observed interesting events in the network. A highly efficient
data-centric routing mechanism will offer significant power cost
reductions [17], and improve network longevity. Moreover,
because of the large amount of system and data redundancy
possible, data becomes disassociated from specific node and
resides in regions of the network [10][7][8]. This paper describes
and evaluates through simulation a scheme we call Rumor
Routing, which allows for queries to be delivered to events in the
network. Rumor Routing is tunable, and allows for tradeoffs
between setup overhead and delivery reliability. It’s intended for
contexts in which geographic routing criteria are not applicable
because a coordinate system is not available or the phenomenon
of interest is not geographically correlated.

Categories and Subject Descriptors
Networks

General Terms
Algorithms, Reliability.

Keywords
SensorNets, Wireless, Routing.

1. INTRODUCTION
The emerging low-power and small form-factor processors,
equipped with wireless communication capabilities and sensors
allow for large-scale, extremely dense networks for environment
monitoring. While most current sensing networks involve small
numbers of sensors, supported by centralized processing and
analysis hardware [14], these new networks will distribute
computation among a high number of nodes. Applications for
these networks must use algorithms that are highly distributed,
since only short-ranged communication is preferred in the context

of the stringent power constraints.[5][10] Furthermore, each node
has limited high SNR sensing range, so sensing is best distributed
and coordinated amongst a potentially large set of nodes. The
algorithms these networks employ must be highly localized [1], as
large distance transmissions are very expensive, and diminish the
network’s overall lifespan. Due to the size of these networks, they
must be self-configuring, highly scalable, redundant, and robust in
dealing with shifting topologies due to node failure and
environment changes. [2] Applications utilizing these networks
must be able to gather data from different parts of the network,
without taxing the network’s limited bandwidth and power. The
communication channels are noisy, failure rates high, and routes
ephemeral. Furthermore, ad-hoc deployment, required for dealing
with networks of this size, may not provide global localization
information to individual nodes.

One area in which these sensor-nets will be used is large scale
environmental monitoring. [4] The goal is to enable the scattering
of thousands of these nodes in areas that are difficult to access for
study using conventional methods. The network could then
monitor events [13], perform local computations on the data, and
either, relay aggregated data, or configure local and global
actuators.

In this paper we describe and analyze a method of routing queries
to nodes that have observed a particular event. This allows
retrieval of data keyed on the event, not the underlying network
addressing scheme or geography.

An event is an abstraction, identifying anything from a set of
sensor readings, to the node’s processing capabilities. For the
purpose of the simulation studies in this paper, events are
assumed to be localized phenomenon, occurring in a fixed region
of space. This assumption will hold for a wide variety of sensor-
net applications, since many external events are localized them
selves. A query can be a request for information, or orders to
collect more data. Once the query arrives at its destination, data
can begin to flow back to the query’s originator. If the amount of
returning data is significant, it makes sense to invest in
discovering short paths from the source to the sink. Methods such
as directed diffusion [10] resort to flooding the query throughout
the entire network [12], in order to discover the best path. If
geographic information is available, the best path is the greedy
shortest path, and does not require flooding [11][18].

However, in many applications the quality of the path may not be
very important, since the application may only request a small
amount of data back, or simply needs to order the target node to
initiate more thorough sensing. In such cases, flooding every
query may not be as efficient as delivering it by a non-optimal
route.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
WSNA’02, September 28, 2002, Atlanta, Georgia, USA.
Copyright 2002 ACM 1-58113-589-0/02/0009…$5.00.

22

Flooding does not have to be restricted to queries. For
applications where there are few events and many queries, it
makes sense to flood the event, and set up gradients towards it. [7]
However, unless the number of queries per event and the amount
of data generated by each event is quite high, the setup cost for
event flooding cannot be effectively amortized.

This paper proposes Rumor Routing, a logical compromise
between flooding queries and flooding event notifications. The
idea is to create paths leading to each event; whereas event
flooding creates a network-wide gradient field [7]. In this way,
when a query is generated it can be sent on a random walk until it
finds the event path; instead of flooding it throughout the
network.

Figure 1: Query is originated from the query source and
searches for a path to the event. As soon as it finds a node on
the path, it’s routed directly to the event.

As soon as the query discovers the event path, it can be routed
directly to the event. If the path cannot be found, the application
can try re-submitting the query, or as a last resort, flooding it. As
this paper shows, under a wide range of conditions, it is possible
to achieve an extremely high delivery rate. Monte-Carlo
simulations show the probability of two lines intersecting in a
bounded rectangular region to be approximately 69%. This means
five paths leading to an event will have a 99.7% chance of being
encountered by a query. Although neither the path nor the query is
entirely straight, and the topology may not be rectangular, the
heuristic should still hold. The number of paths and the number of
query attempts increase the likelihood of delivery exponentially,
making the Rumor Routing tunable to a wide variety of
application requirements.

The method for setting up these paths to an event is the main
focus of this paper. Again, we take advantage of the fact that two
straight lines in a plane are likely to intersect. The algorithm

employs a set of long-lived agents that create paths (in the form of
state in nodes) directed towards the events they encounter.
Whenever an agent crosses a path leading to an event it has not
yet seen, it adapts its behavior and thenceforth creates path state
that leads to both (or multiple) events.

Figure 2: When agent prorogating the path to Event 2 comes
across a path to Event 1, it begins to propagate the aggregate
path to both.

In the diagram above, an agent has been creating path state
leading to Event 2. When it crosses the path to Event 1, it begins
to create aggregate path state, leading to both Event 1 and Event
2.

The agents also optimize the paths in the network if they find
shorter ones. When an agent finds a node whose route to an event
is more costly than its own, it will update the node’s routing table
to the more efficient path.

So it’s not necessary to produce more than a few agents for each
event, since the trail will be picked up and propagated by other
agents.

23

Figure 3: The agent modifies the exist path (top) to a more
optimal one (bottom)

2. RELATED WORK
Sensor networks are the focus of a growing research effort.
[10][7][8] Traditional routing schemes have been difficult to
adopt, and as a result, many new algorithms have been
developed.[10][18][11][7]

● GRAdient Broadcast (GRAB) [7] - describes a way of building

a cost field toward a particular node, and then reliably routing
queries across a limited size mesh toward that node. It comes
with the overhead of a network flood to set up the cost field,
but queries are routed along an interleaved set of short paths,
and can thus be delivered cheaply and reliably. GRAB was not
designed specifically to support in network processing but
significantly influenced the work presented in its use of event-
centric routing state in the network.

● Gossip Routing [12] – provides a scheme for performing
reliable network broadcasts, probabilistically. Nodes flood by
sending a message to some of the neighbors, instead of all, but
due to the redundancy in the links, most nodes received the
flooded packet. This scheme can be used to either deliver
queries, or flood events for gradient setup, with less overhead
than conventional flooding described in this paper. Thus far,

GOSSIP routing has not been designed specifically for energy
constrained contexts, but may be extended to be applicable in
the area of sensor nets.

● Ant Algorithms [16] – are a class of agent based routing
algorithms modeled after ant behavior. Agents traverse the
network encoding the quality of the path they have traveled,
and leave it the encoded path as state in the nodes. At every
node, an agent picks its next hop probabilistically, but biased
toward already known good paths. [12] This results in faster
and more thorough exploration of “good” regions, and a path
for queries to follow. These algorithms are very effective in
dealing with failure, since there is always some amount of
exploration, especially around previously good solutions.
However, due to the large number of nodes, the number of ant
agents required to achieve good results tends to be very large,
making them difficult to apply in sensor networks

● Directed Diffusion and Geo-Routing [10][18][11] – provide a
mechanism for doing a limited flood of a query toward the
event, and then setting up reverse gradients to send data back
along the best route. GEAR/GPSR rely on localized nodes, and
provides savings over a complete network flood by limiting the
flooding to a geographical region. Diffusion results in high
quality paths, but requires an initial flood of the query for
exploration. One of its primary contributions is an architecture
that names data and that is intended to support in network
processing. Rumor routing is intended to work in conjunction
with diffusion, bringing innovations from GRAB and GOSSIP
routing to this context.

● Data-Centric Storage in sensornets [13] – Allows access to
named data by hashing the name to a geographic region in the
network. This scheme can be used to efficiently deliver queries
to named events by storing the location of the event, once
known, in the region of the network to which the name hashes.
DCS relies on a global coordinate system, and an underlying
geo-routing framework.

3. OVERHEAD OF FLOODING
Before we present our Rumor Routing algorithm, we discuss the
overhead of flooding mechanisms. As discussed earlier, if the
application expects a large amount of data to be returned along
the route of the query, either event flooding or query flooding
could be used

If we assume uniform density in the network, and implicit
broadcast of all transmissions, we can use the number of
transmissions as a naïve, first order metric for comparing the
energy requirements for these algorithms. Since every time a node
transmits, all of its neighbors will receive the packet, and the
number of neighbors is the same due to uniform density, the
energy used in receiving is proportional to the number of
transmissions. So the total energy used by the network is
proportional to the number of transmissions.

3.1 Query Flooding
Assuming no localization information is available for use in
geographic flooding, we resort to flooding the entire network with

24

our query. So if we have N nodes, we must perform N
transmissions per query, or N*Q transmissions total. This assumes
no collisions, which, in a flood, can become a serious problem,
and can make probabilistic flooding harder to implement due to
the high amount of message loss. [6][12] The energy used is
independent of the number of events tracked by the network. This
scheme is useful if the number of events is very high, compared to
the number of queries.

3.2 Event Flooding
Whenever a node witnesses an event, it can flood the network. All
other nodes can form gradients toward the event, based on the
number of hops to sink. An efficient way of setting up these
gradients is discussed in the GRAB paper [7], and requires N
transmissions per event. After the cost field is set up, queries can
be reliably routed to the event along the shortest path. The cost of
each query in terms of transmissions is negligible, and can be
assumed to be zero for the scope of this paper. So the total energy
expended by the network in event flooding is E*N, where E is the
number of events. This is independent of the number of queries.
So when the number of events is low, compared to the number of
queries, event flooding can be efficient. The rest of this paper
focuses on finding the threshold, below which Rumor Routing
results in less energy use than event routing.

Figure 4: The gray region shows where a particularly
configured instance of Rumor Routing fits in terms of setup
and per-query cost. Obviously we are only interested in the
region bellow query and event flooding.

3.3 Rumor Routing
The Rumor Routing algorithm is intended to fill the region
between query flooding and event flooding. It is only useful if the
number of queries compared to the number of events is between
the two intersection points. An application aware of this ratio can
use a hybrid of Rumor Routing and flooding to best utilize
available power. Also, if reliable delivery is not a requirement,
applications can tune the algorithm to trade off quality of service
versus required energy.

4. ALGORITHM OVERVIEW
The network is modeled as a set of densely distributed wireless
sensor nodes, with relatively short but symmetric radio ranges
[15]. These nodes record unique events, and the application needs
to be able to route queries to a node that has recorded a particular
event. What follows is an informal description of the algorithm.
The psudo-code is included in the appendix.

• Each node maintains a list of its neighbors, as well as an
events table, with forwarding information to all the events it
knows. The neighbor list can be actively created and maintained
by actively broadcasting a request, or passively, through listening
for other node broadcasts. Since the simulations were done in a
static topology, each node simply broadcast its id at the beginning
of the simulation.

• When a node witnesses an event, it adds it to its event table,
with a distance of zero to the event. It also probabilistically
generates an agent. The probability of generating an agent is an
algorithm parameter, and is explored in the experiment section.

• An agent is a long-lived packet, which travels the network,
propagating information about local events to distant nodes'. It
contains an events table, similar to the nodes, which it
synchronizes with every node it visits. The agent travels the
network for some number of hops (La), and then dies.

• Any node may generate a query, which should be routed to
a particular event. If the node has a route to the event, it will
transmit the query. If it does not, it will forward the query in a
random direction. This continues until the query TTL (Lq)
expires, or until the query reaches a node that has observed the
target event. In certain cases the node will not forward the query
(loop detection).

• If the node that originated the query determines that
the query did not reach a destination, it can try retransmitting,
give up, or flood the query. Retransmission is a risk, but the
chance of delivery is exponential with the number of
transmissions. Hopefully only a very small percentage of queries
would have to be flooded.

4.1 Agents
Each agent informs nodes it encounters of any events it has
witnessed along its route. To do this, it carries a list of all the
events it has encountered, along with the number of hops to that
event. When it arrives at node A from its neighbor B, it will
synchronize its list with the node’s list.

In this case (Figure 5), A’s route to event E1 is longer than the
agent’s. But the agent does not know how to route to E2. After the
table synchronization completes, the event tables will contain the
best routes to each event.

Since all transmissions are effectively broadcasts in a wireless
network, neighboring nodes can hear the agent as it moves along
its path. They take advantage of this, and modify their event table
based on the information the agent contains. This means the agent
actually leaves a fairly thick path as it travels.

25

After performing the table synchronization, the agent’s TTL
is decremented, and if it is greater than zero, the agent is
forwarded. In order to propagate

Figure 5: The agent having left node B contains a route to E1
of length 3. When it arrives at node A and performs a table
sync, it will learn about the path to E2 and optimize A's path
to E1.

directions to the event as far as possible in the network, a
straightening algorithm is used when determining the agent’s next
hop. The agent maintains a list of recently seen nodes. When it
arrives at a node, it adds all of the node’s neighbors to the list.
When picking its next hop, it will first try nodes not in the list.
This eliminates most loops, and allows the agent to create fairly
straight paths through the network. Although local looping will
tend to generate more efficient paths, simulations show it is more
important for a query to find a path to the event, regardless of
quality.

Finally, a policy to generate agents is required. Although any
node can generate an agent, it makes more sense for a node that
has observed an event to do so. This way the agent starts out
containing some useful information, and can start disseminating it
immediately. The policy used for our simulations had a fixed
probability that a node that has witnessed an event would generate
an agent. The actual number of agents generated depends on the
number of events, the event size, and the node density. A more
optimal strategy for agent generation is left for future work.

For applications where events are temporal, the event table may
have an expiration timestamp associated with each event. Agents
may use this information in cases where packet size limits the
number of events they can propagate.

4.2 Queries
A query can be generated at any time by any node, and is targeted
to an event. If a node has a route (event path state) toward the
target event, it forwards the query along the route. If it does not, it
forwards the query to a random neighbor, assuming the query has
not exceeded its TTL. Simulations show that forwarding queries
along a straight path yields better results than random forwarding.
The query employs the same mechanism as the agent, keeping a
list of recently seen nodes, and avoiding visiting them. This only
applies when the node is picking a random neighbor, since the
query is always forwarded toward the event if a route is known.

In a dynamic network, where node failure is a possibility, it is
sometimes possible to get looping routes. This is avoided through
TTL in the query packet, but can be further avoided by assigning
a random id to each query, and keeping a list of recently seen
queries in the node. If a query arrives at a node by which it had
already been forwarded, the node should send it to a random
neighbor, not the route it has toward the event.

Some queries will not reach their destination, and the application
that originates them must detect the failure, and handle it. Since
queries have a maximum TTL, the application has a reliable value
for a timeout. Failure can be handled in a variety of ways, but the
simplest is to flood the query. This is very expensive, but
guarantees delivery. Under most circumstances the percent of
undelivered queries is very low, and can be reduced further by
increasing the queries TTL.

5. SIMULATION RESULTS
All simulations were performed in LecsSim [9] on a network of N
= {3000,4000,5000} nodes scattered randomly on a two-
dimensional field of 200x200m2. A simple radial propagation
model was used, where each node could reliably send packets to
any node within 5m from it. The impact of realistic propagation
models is left for future simulation, and experimental studies. A
static event map was generated, randomly scattering E =
{10,50,100} events of circular shape with radius of 5m, across the
field. A query pattern was then randomly generated, creating 1000
queries, each from a random node to a random event. The nodes
were initialized, and began generating agents, as proscribed by the
algorithm. When the agents finished setting up their paths, the
query pattern was run, and the number of successful routed
queries was recorded.

5.1 Comparison to Event Routing and Query
Routing
If we adapt a naïve strategy of flooding undelivered queries, and
thus guarantee 100% reliability, we will need to perform
additional N*(1000-Qf) sends, where Qf is the number of
delivered queries. The average energy used for each query, after

26

the paths are created, is (Eq + N*(1000-Qf))/1000, where Eq is
the energy spent routing queries.
The average energy per query, along with the setup energy, can be
used to find the total energy utilized by the network to route Q
queries.






 −
++=

1000
1000

** f
qst

Q
NEQEE

 This value can then be compared to query flooding, where

NQEt *=

as well as event flooding, where

NEEt *=

Several simulations were performed, with N set at 3000, 4000,
and 5000 nodes, and E at 10, 50, and 100 events. For every pair
of E and N, the algorithm parameters were varied to find which
parameters lead to the best energy utilization.

The values for the following parameters were tested in each
scenario:

Number of Agents (A) could not be varied directly, but the
probability of an agent being generated was varied, and the
number of resulting agents recorded.

Agent TTL (La) was tested for 100, 500, and 1000 hops.

Query TTL (Lq) was tested for 1000 and 2000 hops.

Agent TTL of 100, along with a small number of agents (around
25) generated poor results. Although the setup cost was minimal,
only about 60% of the queries could be delivered successfully. A
large number of Agents (around 400) had a high setup cost (above
event flooding), but also a very high delivery rate (99.9%), as well
as lower average energy per query. Even if undelivered queries
were assumed to be flooded, for a wide range of settings and
scenarios, the Rumor Routing algorithm performed better than
event flooding.

The best result (Figure 7) requires only a small number of agents
(around 31), with a high TTL (1000). It successfully delivers
98.1% of all queries, with an average cost of 92 cumulative hops
per query, or about 1/40 of a network flood. This comes with a
setup cost of 31031 transmissions, or about 8 floods. This means
that if we need to send out less than 3600 queries (36 per event),
Rumor Routing can achieve significant savings over event
flooding.
Most of parameter values caused better performance than event
flooding up to a certain event cost threshold (Te). Usually, Te
increased with the number of nodes and events, since the cost of
event flooding grows linearly with both. In certain cases, usually
when the number of events is low (10), there was more than one
set of parameters that could be used.

5.2 Algorithm Stability
Because this algorithm relies on random decisions (when
determining which way to send agents and queries, and which
nodes generate the agents), it is important to show that its

10 Events , 4000 Nodes

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40

Num ber of Queries

N
um

be
r o

f T
ra

ns
m

is
si

on
s

(th
ou

sa
nd

s)

Q uery Flooding

A =28, La=500, Lq=1000

A =52, La=100, Lq=2000

Event Flooding

Figure 6: Some possible configurations of Rumor Routing.
Although certain parameters result in costs greater than the
flooding alternatives, others allow lower total cost for up to 36
queries per event with 98.1% delivery rate.

Figure 7: If the number of queries per event is less than ten, a
smaller setup cost is better than a smaller per-query delivery cost.
If, however, we want to deliver more queries (up to 40), a larger
investment in path building yields better results. Delivery is
guaranteed, as undelivered queries are flooded.

100 Events, 4000 Nodes

0
100
200
300
400
500
600
700
800
900

1000

0 900 1800 2700 3600
Number of Queries

Nu
mb
er
of
Tra
ns
mi
ssi
on
s
(th
ou
sa
nd
s)

Event Flooding

A=589, La=1000, Lq=2000

A=31, La=1000, Lq=2000

A=26, La=100, Lq=1000

Query Flooding

27

performance does not vary significantly over several runs. To test
the stability of the algorithm, we used the same set of parameters,
event, node, and query maps to run 50 simulations. Each time we
seeded the random number generator with a different seed. For
this particular run, the Te was found to be 118 on average, with a
standard deviation of 4.6. This means that 99% of the values for
Te will be found between 104 and 131, and so the algorithm is
stable for at least this particular configuration.

5.3 Effects of Event Distribution.
Although most reasonable values for the algorithm parameters
yield better results than event flooding, we would like a method of
picking the values to maximize Te for a known network and event
density. To be able to accurately predict Te for a set of parameter
values, we need to find how much the algorithm is affected by the
distribution of the events, as opposed to their density.
To measure the effect of event distribution, the same set of
parameter values was used on 100 randomly generated event,
node, and query maps. For each simulation, the delivery
probability was found, and a CDF graph is presented below.

CDF of delivery rate for

0

20

40

60

80

100

120

60 64 68 72 76 80 84 88 92 96 10
0

Delivery Rate (%)

Pr
ob

ab
ili

ty
 o

f D
el

iv
er

y
R

at
e

or
 B

et
te

r (
%

Figure 8: The probability that Rumor Routing successfully
delivers at least that number of queries for any
event/node/query distribution.

Although this set of parameter values always produces good
results, delivery rate varies significantly with the random
event/node/query distribution. Most values are centered on 500,
but can sometimes go as high as 2200. The mean is 85%, with a
very high standard deviation of 8.8%. The number of agents
generated in each run varied between 24 and 56, with the mean of
37, since each node had a random chance of generating an agent.
This did not affect the delivery probability in any significant way,

and there appears to be no trend between the number of agents
and the delivery probability in this range.

5.4 Fault Tolerance
To test the algorithm’s ability to deal with failed nodes two failure
modes were tested, random and clustered. After the routes were
established some of the nodes were disabled. This poses an upper
bound on the algorithm’s failure, since in practice agents from
other events will effectively repair damaged routes. The algorithm
behaved the same way under both failure conditions. The
probability of delivery degraded slowly for 0-20% node failure.
For percentages over 20%, the performance degraded more
severely, as expected. The delivery probability was strongly
correlated to the number of failed nodes, with the correlation
coefficient of 0.91. The best linear approximation of the error data
had a slope of –1.8, with measurements taken up to 20% of node
failure. This means at about 5% node failure we can expect 90%
of the queries to be delivered successfully. The data is better
approximated with a polynomial, since the delivery rate begins to
decrease more dramatically after 5% failure. These results show
the inherent redundancy in the routes that are created, and show a
very graceful degradation. The effect of the repair mechanism,
inherent in the algorithm, will be explored in the future.

No reliable trend has been found in the maximum query to event
ratio with increasing node and event densities. This is probably
due to the small sample size (one run per set of algorithm values
for each density).

6. FUTURE WORK
There is further work to do investigating a wider range of
scenarios, and investigating some algorithm design alternatives.

6.1 Wider Range of Simulation Scenarios
● Network Dynamics - the simulations in this paper were

based on simultaneous occurrence of all the events, followed
by a fixed setup time for the paths. In reality, the events will
occur in time, making the paths to older events more
prevalent than to the younger ones. The energy requirements,
than, depend on the time between the event and queries.

● Consider Collisions - the behavior of this algorithm should
perform much better than the flooding alternatives, if
collisions are considered. Rumor Routing performs fewer
simultaneous transmissions than there are agents in the
system. Since the number of agents is small, compared to the
number of nodes, this should not lead to a high collision rate.
But reliable hop delivery is required, and there may be
significant overhead involved in dealing with collisions.

● Asynchronous Events – currently in the simulations, all
events happen simultaneously. For most applications,
however, events are distributed in time, as well as space. This
algorithm would favor older events, and it would be
interesting to study how the rate of events affects the
performance of Rumor Routing.

● Non Localized Events - this paper focused on localized
events, of a fixed size, but the algorithm allows for a much

28

broader definition of an event. An event can be distributed
through the entire network, but only detected by some of the
nodes. It does not have to be bound to a sensor reading, and
can simply represent node capabilities. This algorithm, for
example, can be used to route queries to nodes that have a
camera, and enough energy to use it. Since each node
decides which events it has observed, there is a lot of
flexibility in using the events for all sorts of data centric
queries. Although the simulations showed this algorithm to
be successful in localized events, it would make sense for it
to be even more so in a distributed one. This will be tested in
the future.

● Non-random Query Pattern - the traffic pattern used for
running queries on the network was randomly generated for
the simulations in this paper. This assumes that any node is
likely to request data on any event. In reality, it could be that
the frequency of queries is not uniformly distributed. In
many applications, it is more likely that a node closer to the
event will want to query it, since most algorithms will tend to
perform local computations where possible. On the other
hand, local flooding may be a better approach to use when
close-by nodes need to send a query to an event. Rumor
Routing, than, can become a method for allowing far away
nodes to efficiently query events.

6.2 Algorithm Design Alternatives
● Non Random Next Hop Selection - currently, agents

randomly pick their next hop, constrained by the
straightening algorithm. There may be smarter ways of
deciding where the agent should go. If localization
information is present, it can attempt to maximize the
probability of a crossing by trying to divide the network into
equal halves. Agents can leave information about the
frequency of trails they have encountered in a remote part of
the network, and other agents can try to move toward the less
explored regions.

● Use of Constrained Flooding - queries are randomly
forwarded until they find a path to the target. Doing limited
floods may provide for a more efficient path finding method.
This creates a problem of finding which queries to prune
after the flood. More than one query can also be generated,
creating a higher likelihood of delivery, but at a higher
energy cost per query.

● Parameter Setting Exploration - finding optimal parameters
for a particular application is very important. As this paper
shows, the event and query pattern has significant effect on
the algorithm performance, and thus, optimal parameter
values. Discovering whether the parameters can be tuned
gradually by individual nodes through local observations, or
approximated based on a model of the event and traffic
patterns, is another important area that requires more
research.

After some additional exploration, we plan to implement Rumor
Routing on our wireless testbed at which time additional issues
will undoubtedly arise.

7. CONCLUSION
There is an obvious need for delivering queries to events in the
network, and large costs associated with both flooding the query,
or alternatively, establishing a global coordinate system for
geographic routing. Simulations show that the Rumor Routing
algorithm provides a good method for delivering queries to events
in large networks under a wide range of conditions, with energy
requirements lower than the alternatives. It is designed to be
tunable to different application requirements, and be adjusted to
support different query to event ratios, successful delivery rates,
and route repair. Furthermore, it is able to handle node failure
gracefully, degrading its delivery rate linearly with the number of
failed nodes. It remains for future work to develop appropriate
methods for tuning the algorithm parameters.
There is an obvious need for delivering queries to events in the
network, and large costs associated with flooding queries. When a
geographic structure exists in the data, geographic coordinates
and geo-routing [18][11] can be used effectively to reduce interest
and data propagation overhead. However, when interests are
expressed in terms of non-geographic attributes (such as searching
for high concentrations of a particular chemical, or acoustic
events that match a particular signature), geographic routing does
not apply. Simulations show that the Rumor Routing algorithm
may provide a powerful and efficient method for delivering
queries to events in large networks under a wide range of
conditions. It is designed to be tunable to different application
requirements, and be adjusted to support different query to event
ratios, delivery rates, and route repair. Furthermore, it is able to
handle node failure gracefully, degrading its delivery rate linearly
with the number of failed nodes. It remains for future work to
develop appropriate methods for tuning the algorithm parameters
and to verify the power and efficiency of the scheme first with real
sensor-data sets, and ultimately in real, not simulated, systems.

8. ACKNOWLEDGMENTS
Thanks to Ben Greenstein for suggesting the monte-carlo
simulation for the probability of intersecting lines in a bounded
region.

9. REFERENCES
[1] Abidi, A.A. Pottie, G.J. Kaiser, W.J. Power-Conscious

Design of Wireless Circuits and Systems. Proceedings of the
IEEE, vol. 88, no. 10, pp. 1528-45, October 2000.

[2] Cerpa A. and Estrin. D. Ascent: Adaptive Self-
Configuring sEnsor Network Topologies. UCLA
Computer Science Department Technical Report
UCLA/CSD-TR 01-0009, May 2001.

[3] Dorigo, M. Maniezzo, V. Colorni, A. The Ant System:
Optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics-Part
B, Vol.26, No. 1, 1996, pp.1-13

[4] Estrin, D. Girod, L. Pottie, G. Srivastava, M.
Instrumenting the world with wireless sensor networks.
In Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP
2001), Salt Lake City, Utah, May 2001.

29

[5] Estrin, D. Govindan, R. Heidemann, J. and Kumar, S.
Next Century Challenges: Scalable Coordination in
Sensor Networks. In Proceedings of the Fifth Annual
International Conference on Mobile Computing and
Networks (MobiCOM '99), August 1999, Seattle,
Washington

[6] Ganesan, D. Krishanamachari, B. Woo, A. Culler, D.
Estrin, D. Wicker, S. Large Scale Network Discovery:
Design Tradeoffs in Wireless Sensor Systems. Poster
in Proceedings of the Symposium on Operating
Systems Principles (SOSP 2001). Lake Louise, Banff,
Canada. October 2001.

[7] GRAdient Broadcast: A Robust, Long-lived Large
Sensor Network, http://irl.cs.ucla.edu/papers/grab-tech-
report.ps

[8] Heinzelman, W. Chandrakasan, A. and Balakrishnan,
H. Energy-Efficient Communication Protocols for
Wireless Microsensor Networks, Proc. Hawaaian Int'l
Conf. on Systems Science, January 2000.

[9] http://lecs.cs.ucla.edu/~daveey/art/code.html
[10] Intanagonwiwat, C. Govindan R. and Estrin, D.

Directed Diffusion: A Scalable and Robust
Communication Paradigm for Sensor Networks. In
Proceedings of the Sixth Annual International
Conference on Mobile Computing and Networks
(MobiCOM 2000), August 2000, Boston,
Massachusetts.

[11] Karp, B. and Kung, H.T. GPSR: Greedy perimeter
stateless routing for wireless networks. In Proceedings
of the ACM/IEEE International Conference on Mobile
Computing and Networking, pages 243–254, Boston,
Mass., USA, August 2000. ACM.

[12] Lin, M. Marzullo, K. Masini, S. Gossip versus
deterministic flooding: Low message overhead and
high reliability for broadcasting on small networks.
UCSD Technical Report TR CS99-0637.
http://citeseer.nj.nec.com/278404.html

[13] Ratnasamy, S. Karp, B. Estrin, D. Govidan, R. and
Shenker, S. A Gerographic Hash Table for Data-
Centric storage in SensorNets. Under submission to the
First ACM International Workshop in Wireless Sensor
Networks and Applications (WSNA). June 2002.

[14] Sensors: The Journal of Applied Sensing Technology

[15] Since symmetric connectivity is not always the case in
sensor networks, nodes will only count neighbors
where two-way communication is possible.

[16] Subramanian, D. Druschel, P. Chen, J. Ants and
Reinforcement Learning: A Case Study in Routing in
Dynamic Data Networks. In Proceedings of IJCAI-97,
1997.

[17] Xu, Y. Heidemann, J. Estrin, D. Geography-informed
Energy Conservation for Ad-hoc Routing. In
Proceedings of the Seventh Annual ACM/IEEE
International Conference on Mobile Computing and
Networking (ACM MobiCom), Rome, Italy, July 16-
21, 2001.

[18] Yu, Y. Govindan, R. and Estrin, D. Geographical and
Energy Aware Routing: A Recursive Data
Dissemination Protocol for Wireless Sensor Networks.
UCLA Computer Science Department Technical
Report UCLA/CSD-TR-01-0023, May 2001.

30

APENDIX A: RumorRouting Pseudo-Code

NODE.EVENTS <- {}
NODE.NEIGHBORS <- {}
broadcast "hello" packet with nodeId

repeat for ever
 if sensors detect event E
 call eventDetected(E)
 if "hello" packet received
 neighbors <- neighbors U neihborID
 if "agent" packet received
 call agentReceived(AGENT, SOURCE)
 if "query" packet receieved
 call queryReceived(QUERY, SOURCE)

eventDetected(E)
 NODE.EVENTS[E].DISTANCE <- 0
 create new agent A
 AGENT.EVENTS = {}
 AGENT.NUMHOPS=0
 // send the agent to your self
 ForwardAgent(NODE.ID)

agentReceived(AGENT,SOURCE)
 AGENT.NUMHOPS <- AGENT.NUMHOPS+1

 // update the node's events table based on the agent's
 foreach event named E in AGENT.EVENTS
 if (NODE.EVENTS does not contain E) OR (NODE.EVENTS[E].NUMHOPS > AGENT.EVENTS[E])
 NODE.EVENTS[E].DISTANCE <- AGENT.NUMHOPS - AGENT.EVENTS[E].VISIT_TIME
 AGENT.EVENTS[E].DIRECTION <- SOURCE

 // update the agent's events table based on the node's
 foreach event named E in NODE.EVENTS
 AGENT.EVENTS[E].VISIT_TIME <- (- NODE.EVENTS[E].DISTANCE)

 if AGENT.NUMHOPS < AGENT_TTL
 DESTINATION <- pick neighbor based on agent forwarding policy
 forwardAgent(AGENT,DESTINATION)

queryReceived(QUERY,SOURCE)
 QUERY.TTL <- QUERY.TTL - 1
 if NODE.EVENTS[QUERY.EVENT_NAME].DISTANCE=0
 // the query reached a valid destination
 handleValidQuery(QUERY)

 else if NODE.EVENTS[QUERY.EVENT_NAME].DISTANCE > 0
 // the node has a path to the event
 forwardQuery(QUERY,NODE.EVENTS[QUERY.EVENT_NAME].DIRECTION)

 else
 DESTINATION <- pick neighbor based on query forwarding policy
 forwardQuery(QUERY,DESTINATION)

Forwarding policies can range from simple random schemes, to ones trying to optimize the path intersection probabilities. In the simulations, a
simple heuristic was used to "straighten" paths. Each packet kept a small history of the nodes it has visited and avoided them as potential
destinations. Usually only a few nodes need to be remembered since a straight path will move the packet out of their territory in a few hops

31

