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ABSTRACT 
Advances in micro-sensor and radio technology will enable small 
but smart sensors to be deployed for a wide range of 
environmental monitoring applications. In order to constrain 
communication overhead, dense sensor networks call for new and 
highly efficient methods for distributing queries to nodes that 
have observed interesting events in the network. A highly efficient 
data-centric routing mechanism will offer significant power cost 
reductions [17], and improve network longevity.  Moreover, 
because of the large amount of system and data redundancy 
possible, data becomes disassociated from specific node and 
resides in regions of the network [10][7][8]. This paper describes 
and evaluates through simulation a scheme we call Rumor 
Routing, which allows for queries to be delivered to events in the 
network. Rumor Routing is tunable, and allows for tradeoffs 
between setup overhead and delivery reliability. It’s intended for 
contexts in which geographic routing criteria are not applicable 
because a coordinate system is not available or the phenomenon 
of interest is not geographically correlated.  
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1. INTRODUCTION 
The emerging low-power and small form-factor processors, 
equipped with wireless communication capabilities and sensors 
allow for large-scale, extremely dense networks for environment 
monitoring. While most current sensing networks involve small 
numbers of sensors, supported by centralized processing and 
analysis hardware [14], these new networks will distribute 
computation among a high number of nodes. Applications for 
these networks must use algorithms that are highly distributed, 
since only short-ranged communication is preferred in the context 

of the stringent power constraints.[5][10] Furthermore, each node 
has limited high SNR sensing range, so sensing is best distributed 
and coordinated amongst a potentially large set of nodes. The 
algorithms these networks employ must be highly localized [1], as 
large distance transmissions are very expensive, and diminish the 
network’s overall lifespan. Due to the size of these networks, they 
must be self-configuring, highly scalable, redundant, and robust in 
dealing with shifting topologies due to node failure and 
environment changes. [2] Applications utilizing these networks 
must be able to gather data from different parts of the network, 
without taxing the network’s limited bandwidth and power. The 
communication channels are noisy, failure rates high, and routes 
ephemeral. Furthermore, ad-hoc deployment, required for dealing 
with networks of this size, may not provide global localization 
information to individual nodes. 

One area in which these sensor-nets will be used is large scale 
environmental monitoring. [4] The goal is to enable the scattering 
of thousands of these nodes in areas that are difficult to access for 
study using conventional methods. The network could then 
monitor events [13], perform local computations on the data, and 
either, relay aggregated data, or configure local and global 
actuators. 

In this paper we describe and analyze a method of routing queries 
to nodes that have observed a particular event. This allows 
retrieval of data keyed on the event, not the underlying network 
addressing scheme or geography.  

An event is an abstraction, identifying anything from a set of 
sensor readings, to the node’s processing capabilities. For the 
purpose of the simulation studies in this paper, events are 
assumed to be localized phenomenon, occurring in a fixed region 
of space. This assumption will hold for a wide variety of sensor-
net applications, since many external events are localized them 
selves. A query can be a request for information, or orders to 
collect more data. Once the query arrives at its destination, data 
can begin to flow back to the query’s originator. If the amount of 
returning data is significant, it makes sense to invest in 
discovering short paths from the source to the sink. Methods such 
as directed diffusion [10] resort to flooding the query throughout 
the entire network [12], in order to discover the best path. If 
geographic information is available, the best path is the greedy 
shortest path, and does not require flooding [11][18].  

However, in many applications the quality of the path may not be 
very important, since the application may only request a small 
amount of data back, or simply needs to order the target node to 
initiate more thorough sensing. In such cases, flooding every 
query may not be as efficient as delivering it by a non-optimal 
route.  
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Flooding does not have to be restricted to queries. For 
applications where there are few events and many queries, it 
makes sense to flood the event, and set up gradients towards it. [7] 
However, unless the number of queries per event and the amount 
of data generated by each event is quite high, the setup cost for 
event flooding cannot be effectively amortized.  

This paper proposes Rumor Routing, a logical compromise 
between flooding queries and flooding event notifications. The 
idea is to create paths leading to each event; whereas event 
flooding creates a network-wide gradient field [7]. In this way, 
when a query is generated it can be sent on a random walk until it 
finds the event path; instead of flooding it throughout the 
network. 

 

 
Figure 1: Query is originated from the query source and 
searches for a path to the event. As soon as it finds a node on 
the path, it’s routed directly to the event. 
 
As soon as the query discovers the event path, it can be routed 
directly to the event. If the path cannot be found, the application 
can try re-submitting the query, or as a last resort, flooding it. As 
this paper shows, under a wide range of conditions, it is possible 
to achieve an extremely high delivery rate. Monte-Carlo 
simulations show the probability of two lines intersecting in a 
bounded rectangular region to be approximately 69%. This means 
five paths leading to an event will have a 99.7% chance of being 
encountered by a query. Although neither the path nor the query is 
entirely straight, and the topology may not be rectangular, the 
heuristic should still hold. The number of paths and the number of 
query attempts increase the likelihood of delivery exponentially, 
making the Rumor Routing tunable to a wide variety of 
application requirements. 

The method for setting up these paths to an event is the main 
focus of this paper. Again, we take advantage of the fact that two 
straight lines in a plane are likely to intersect. The algorithm 

employs a set of long-lived agents that create paths (in the form of 
state in nodes) directed towards the events they encounter. 
Whenever an agent crosses a path leading to an event it has not 
yet seen, it adapts its behavior and thenceforth creates path state 
that leads to both (or multiple) events. 

 

 
Figure 2: When agent prorogating the path to Event 2 comes 
across a path to Event 1, it begins to propagate the aggregate 
path to both. 
 
In the diagram above, an agent has been creating path state 
leading to Event 2. When it crosses the path to Event 1, it begins 
to create aggregate path state, leading to both Event 1 and Event 
2.  

The agents also optimize the paths in the network if they find 
shorter ones. When an agent finds a node whose route to an event 
is more costly than its own, it will update the node’s routing table 
to the more efficient path.   

So it’s not necessary to produce more than a few agents for each 
event, since the trail will be picked up and propagated by other 
agents.  
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Figure 3: The agent modifies the exist path (top) to a more 
optimal one (bottom) 
 

2. RELATED WORK 
Sensor networks are the focus of a growing research effort. 
[10][7][8] Traditional routing schemes have been difficult to 
adopt, and as a result, many new algorithms have been 
developed.[10][18][11][7] 
 
● GRAdient Broadcast (GRAB) [7] - describes a way of building 

a cost field toward a particular node, and then reliably routing 
queries across a limited size mesh toward that node. It comes 
with the overhead of a network flood to set up the cost field, 
but queries are routed along an interleaved set of short paths, 
and can thus be delivered cheaply and reliably. GRAB was not 
designed specifically to support in network processing but 
significantly influenced the work presented in its use of event-
centric routing state in the network. 

● Gossip Routing [12] – provides a scheme for performing 
reliable network broadcasts, probabilistically. Nodes flood by 
sending a message to some of the neighbors, instead of all, but 
due to the redundancy in the links, most nodes received the 
flooded packet. This scheme can be used to either deliver 
queries, or flood events for gradient setup, with less overhead 
than conventional flooding described in this paper. Thus far, 

GOSSIP routing has not been designed specifically for energy 
constrained contexts, but may be extended to be applicable in 
the area of sensor nets. 

● Ant Algorithms [16] – are a class of agent based routing 
algorithms modeled after ant behavior. Agents traverse the 
network encoding the quality of the path they have traveled, 
and leave it the encoded path as state in the nodes. At every 
node, an agent picks its next hop probabilistically, but biased 
toward already known good paths. [12] This results in faster 
and more thorough exploration of “good” regions, and a path 
for queries to follow. These algorithms are very effective in 
dealing with failure, since there is always some amount of 
exploration, especially around previously good solutions. 
However, due to the large number of nodes, the number of ant 
agents required to achieve good results tends to be very large, 
making them difficult to apply in sensor networks 

● Directed Diffusion and Geo-Routing [10][18][11] – provide a 
mechanism for doing a limited flood of a query toward the 
event, and then setting up reverse gradients to send data back 
along the best route. GEAR/GPSR rely on localized nodes, and 
provides savings over a complete network flood by limiting the 
flooding to a geographical region. Diffusion results in high 
quality paths, but requires an initial flood of the query for 
exploration. One of its primary contributions is an architecture 
that names data and that is intended to support in network 
processing. Rumor routing is intended to work in conjunction 
with diffusion, bringing innovations from GRAB and GOSSIP 
routing to this context.  

● Data-Centric Storage in sensornets [13] – Allows access to 
named data by hashing the name to a geographic region in the 
network. This scheme can be used to efficiently deliver queries 
to named events by storing the location of the event, once 
known, in the region of the network to which the name hashes. 
DCS relies on a global coordinate system, and an underlying 
geo-routing framework. 

 

3. OVERHEAD OF FLOODING 
Before we present our Rumor Routing algorithm, we discuss the 
overhead of flooding mechanisms. As discussed earlier, if the 
application expects a large amount of data to be returned along 
the route of the query, either event flooding or query flooding 
could be used 

If we assume uniform density in the network, and implicit 
broadcast of all transmissions, we can use the number of 
transmissions as a naïve, first order metric for comparing the 
energy requirements for these algorithms. Since every time a node 
transmits, all of its neighbors will receive the packet, and the 
number of neighbors is the same due to uniform density, the 
energy used in receiving is proportional to the number of 
transmissions. So the total energy used by the network is 
proportional to the number of transmissions. 

 
 

3.1 Query Flooding 
Assuming no localization information is available for use in 
geographic flooding, we resort to flooding the entire network with 
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our query. So if we have N nodes, we must perform N 
transmissions per query, or N*Q transmissions total. This assumes 
no collisions, which, in a flood, can become a serious problem, 
and can make probabilistic flooding harder to implement due to 
the high amount of message loss. [6][12] The energy used is 
independent of the number of events tracked by the network. This 
scheme is useful if the number of events is very high, compared to 
the number of queries. 
 

3.2 Event Flooding 
Whenever a node witnesses an event, it can flood the network. All 
other nodes can form gradients toward the event, based on the 
number of hops to sink. An efficient way of setting up these 
gradients is discussed in the GRAB paper [7], and requires N 
transmissions per event. After the cost field is set up, queries can 
be reliably routed to the event along the shortest path. The cost of 
each query in terms of transmissions is negligible, and can be 
assumed to be zero for the scope of this paper. So the total energy 
expended by the network in event flooding is E*N, where E is the 
number of events. This is independent of the number of queries. 
So when the number of events is low, compared to the number of 
queries, event flooding can be efficient. The rest of this paper 
focuses on finding the threshold, below which Rumor Routing 
results in less energy use than event routing. 
 

 
Figure 4: The gray region shows where a particularly 
configured instance of Rumor Routing fits in terms of setup 
and per-query cost. Obviously we are only interested in the 
region bellow query and event flooding. 
 

3.3 Rumor Routing 
The Rumor Routing algorithm is intended to fill the region 
between query flooding and event flooding. It is only useful if the 
number of queries compared to the number of events is between 
the two intersection points. An application aware of this ratio can 
use a hybrid of Rumor Routing and flooding to best utilize 
available power. Also, if reliable delivery is not a requirement, 
applications can tune the algorithm to trade off quality of service 
versus required energy. 
 

4. ALGORITHM OVERVIEW 
The network is modeled as a set of densely distributed wireless 
sensor nodes, with relatively short but symmetric radio ranges 
[15]. These nodes record unique events, and the application needs 
to be able to route queries to a node that has recorded a particular 
event. What follows is an informal description of the algorithm. 
The psudo-code is included in the appendix. 

• Each node maintains a list of its neighbors, as well as an 
events table, with forwarding information to all the events it 
knows. The neighbor list can be actively created and maintained 
by actively broadcasting a request, or passively, through listening 
for other node broadcasts. Since the simulations were done in a 
static topology, each node simply broadcast its id at the beginning 
of the simulation. 

• When a node witnesses an event, it adds it to its event table, 
with a distance of zero to the event. It also probabilistically 
generates an agent. The probability of generating an agent is an 
algorithm parameter, and is explored in the experiment section. 

• An agent is a long-lived packet, which travels the network, 
propagating information about local events to distant nodes'. It 
contains an events table, similar to the nodes, which it 
synchronizes with every node it visits. The agent travels the 
network for some number of hops (La), and then dies.  

• Any node may generate a query, which should be routed to 
a particular event. If the node has a route to the event, it will 
transmit the query. If it does not, it will forward the query in a 
random direction. This continues until the query TTL (Lq) 
expires, or until the query reaches a node that has observed the 
target event. In certain cases the node will not forward the query 
(loop detection).  

• If the node that originated the query determines that 
the query did not reach a destination, it can try retransmitting, 
give up, or flood the query. Retransmission is a risk, but the 
chance of delivery is exponential with the number of 
transmissions. Hopefully only a very small percentage of queries 
would have to be flooded. 

 

4.1 Agents 
Each agent informs nodes it encounters of any events it has 
witnessed along its route. To do this, it carries a list of all the 
events it has encountered, along with the number of hops to that 
event. When it arrives at node A from its neighbor B, it will 
synchronize its list with the node’s list. 

In this case (Figure 5), A’s route to event E1 is longer than the 
agent’s. But the agent does not know how to route to E2. After the 
table synchronization completes, the event tables will contain the 
best routes to each event. 

Since all transmissions are effectively broadcasts in a wireless 
network, neighboring nodes can hear the agent as it moves along 
its path. They take advantage of this, and modify their event table 
based on the information the agent contains. This means the agent 
actually leaves a fairly thick path as it travels.  
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After performing the table synchronization, the agent’s TTL 
is decremented, and if it is greater than zero, the agent is 
forwarded. In order to propagate 

 

 

 
Figure 5: The agent having left node B contains a route to E1 
of length 3. When it arrives at node A and performs a table 
sync, it will learn about the path to E2 and optimize A's path 
to E1. 
 
directions to the event as far as possible in the network, a 
straightening algorithm is used when determining the agent’s next 
hop. The agent maintains a list of recently seen nodes. When it 
arrives at a node, it adds all of the node’s neighbors to the list. 
When picking its next hop, it will first try nodes not in the list. 
This eliminates most loops, and allows the agent to create fairly 
straight paths through the network. Although local looping will 
tend to generate more efficient paths, simulations show it is more 
important for a query to find a path to the event, regardless of 
quality. 

Finally, a policy to generate agents is required. Although any 
node can generate an agent, it makes more sense for a node that 
has observed an event to do so. This way the agent starts out 
containing some useful information, and can start disseminating it 
immediately. The policy used for our simulations had a fixed 
probability that a node that has witnessed an event would generate 
an agent. The actual number of agents generated depends on the 
number of events, the event size, and the node density. A more 
optimal strategy for agent generation is left for future work. 

For applications where events are temporal, the event table may 
have an expiration timestamp associated with each event. Agents 
may use this information in cases where packet size limits the 
number of events they can propagate. 
 

4.2 Queries 
A query can be generated at any time by any node, and is targeted 
to an event. If a node has a route (event path state) toward the 
target event, it forwards the query along the route. If it does not, it 
forwards the query to a random neighbor, assuming the query has 
not exceeded its TTL. Simulations show that forwarding queries 
along a straight path yields better results than random forwarding. 
The query employs the same mechanism as the agent, keeping a 
list of recently seen nodes, and avoiding visiting them. This only 
applies when the node is picking a random neighbor, since the 
query is always forwarded toward the event if a route is known.  

In a dynamic network, where node failure is a possibility, it is 
sometimes possible to get looping routes. This is avoided through 
TTL in the query packet, but can be further avoided by assigning 
a random id to each query, and keeping a list of recently seen 
queries in the node. If a query arrives at a node by which it had 
already been forwarded, the node should send it to a random 
neighbor, not the route it has toward the event.  

Some queries will not reach their destination, and the application 
that originates them must detect the failure, and handle it. Since 
queries have a maximum TTL, the application has a reliable value 
for a timeout. Failure can be handled in a variety of ways, but the 
simplest is to flood the query. This is very expensive, but 
guarantees delivery. Under most circumstances the percent of 
undelivered queries is very low, and can be reduced further by 
increasing the queries TTL.  

 

5. SIMULATION RESULTS 
All simulations were performed in LecsSim [9] on a network of N 
= {3000,4000,5000} nodes scattered randomly on a two-
dimensional field of 200x200m2. A simple radial propagation 
model was used, where each node could reliably send packets to 
any node within 5m from it. The impact of realistic propagation 
models is left for future simulation, and experimental studies. A 
static event map was generated, randomly scattering E = 
{10,50,100} events of circular shape with radius of 5m, across the 
field. A query pattern was then randomly generated, creating 1000 
queries, each from a random node to a random event. The nodes 
were initialized, and began generating agents, as proscribed by the 
algorithm. When the agents finished setting up their paths, the 
query pattern was run, and the number of successful routed 
queries was recorded. 
 
 

5.1 Comparison to Event Routing and Query 
Routing 
If we adapt a naïve strategy of flooding undelivered queries, and 
thus guarantee 100% reliability, we will need to perform 
additional N*(1000-Qf) sends, where Qf is the number of 
delivered queries. The average energy used for each query, after 
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the paths are created, is (Eq + N*(1000-Qf))/1000, where Eq is 
the energy spent routing queries. 
The average energy per query, along with the setup energy, can be 
used to find the total energy utilized by the network to route Q 
queries.  
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 This value can then be compared to query flooding, where  

NQEt *=  

as well as event flooding, where 

NEEt *=  

Several simulations were performed, with N set at 3000, 4000, 
and 5000 nodes, and E at 10, 50, and 100 events. For every pair 
of E and N, the algorithm parameters were varied to find which 
parameters lead to the best energy utilization. 

The values for the following parameters were tested in each 
scenario: 

Number of Agents (A) could not be varied directly, but the 
probability of an agent being generated was varied, and the 
number of resulting agents recorded. 

Agent TTL (La) was tested for 100, 500, and 1000 hops.  

Query TTL (Lq) was tested for 1000 and 2000 hops.  

Agent TTL of 100, along with a small number of agents (around 
25) generated poor results. Although the setup cost was minimal, 
only about 60% of the queries could be delivered successfully. A 
large number of Agents (around 400) had a high setup cost (above 
event flooding), but also a very high delivery rate (99.9%), as well 
as lower average energy per query. Even if undelivered queries 
were assumed to be flooded, for a wide range of settings and 
scenarios, the Rumor Routing algorithm performed better than 
event flooding. 

The best result (Figure 7) requires only a small number of agents 
(around 31), with a high TTL (1000). It successfully delivers 
98.1% of all queries, with an average cost of 92 cumulative hops 
per query, or about 1/40 of a network flood. This comes with a 
setup cost of 31031 transmissions, or about 8 floods. This means 
that if we need to send out less than 3600 queries (36 per event), 
Rumor Routing can achieve significant savings over event 
flooding.  
Most of parameter values caused better performance than event 
flooding up to a certain event cost threshold (Te). Usually, Te 
increased with the number of nodes and events, since the cost of 
event flooding grows linearly with both. In certain cases, usually 
when the number of events is low (10), there was more than one 
set of parameters that could be used.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2 Algorithm Stability 
Because this algorithm relies on random decisions (when 
determining which way to send agents and queries, and which 
nodes generate the agents), it is important to show that its 
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Figure 6: Some possible configurations of Rumor Routing. 
Although certain parameters result in costs greater than the 
flooding alternatives, others allow lower total cost for up to 36 
queries per event with 98.1% delivery rate.  

Figure 7: If the number of queries per event is less than ten, a 
smaller setup cost is better than a smaller per-query delivery cost. 
If, however, we want to deliver more queries (up to 40), a larger 
investment in path building yields better results. Delivery is 
guaranteed, as undelivered queries are flooded. 
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performance does not vary significantly over several runs. To test 
the stability of the algorithm, we used the same set of parameters, 
event, node, and query maps to run 50 simulations. Each time we 
seeded the random number generator with a different seed. For 
this particular run, the Te was found to be 118 on average, with a 
standard deviation of 4.6. This means that 99% of the values for 
Te will be found between 104 and 131, and so the algorithm is 
stable for at least this particular configuration.  
 

5.3 Effects of Event Distribution. 
Although most reasonable values for the algorithm parameters 
yield better results than event flooding, we would like a method of 
picking the values to maximize Te for a known network and event 
density. To be able to accurately predict Te for a set of parameter 
values, we need to find how much the algorithm is affected by the 
distribution of the events, as opposed to their density. 
To measure the effect of event distribution, the same set of 
parameter values was used on 100 randomly generated event, 
node, and query maps. For each simulation, the delivery 
probability was found, and a CDF graph is presented below.  
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Figure 8: The probability that Rumor Routing successfully 
delivers at least that number of queries for any 
event/node/query distribution. 
 
Although this set of parameter values always produces good 
results, delivery rate varies significantly with the random 
event/node/query distribution. Most values are centered on 500, 
but can sometimes go as high as 2200. The mean is 85%, with a 
very high standard deviation of 8.8%. The number of agents 
generated in each run varied between 24 and 56, with the mean of 
37, since each node had a random chance of generating an agent. 
This did not affect the delivery probability in any significant way, 

and there appears to be no trend between the number of agents 
and the delivery probability in this range.  
 

5.4 Fault Tolerance 
To test the algorithm’s ability to deal with failed nodes two failure 
modes were tested, random and clustered. After the routes were 
established some of the nodes were disabled. This poses an upper 
bound on the algorithm’s failure, since in practice agents from 
other events will effectively repair damaged routes. The algorithm 
behaved the same way under both failure conditions. The 
probability of delivery degraded slowly for 0-20% node failure. 
For percentages over 20%, the performance degraded more 
severely, as expected. The delivery probability was strongly 
correlated to the number of failed nodes, with the correlation 
coefficient of 0.91. The best linear approximation of the error data 
had a slope of –1.8, with measurements taken up to 20% of node 
failure. This means at about 5% node failure we can expect 90% 
of the queries to be delivered successfully. The data is better 
approximated with a polynomial, since the delivery rate begins to 
decrease more dramatically after 5% failure. These results show 
the inherent redundancy in the routes that are created, and show a 
very graceful degradation. The effect of the repair mechanism, 
inherent in the algorithm, will be explored in the future. 

No reliable trend has been found in the maximum query to event 
ratio with increasing node and event densities. This is probably 
due to the small sample size (one run per set of algorithm values 
for each density).  

 

6. FUTURE WORK 
There is further work to do investigating a wider range of 
scenarios, and investigating some algorithm design alternatives.  
 

6.1 Wider Range of Simulation Scenarios 
● Network Dynamics  - the simulations in this paper were 

based on simultaneous occurrence of all the events, followed 
by a fixed setup time for the paths. In reality, the events will 
occur in time, making the paths to older events more 
prevalent than to the younger ones. The energy requirements, 
than, depend on the time between the event and queries. 

● Consider Collisions - the behavior of this algorithm should 
perform much better than the flooding alternatives, if 
collisions are considered. Rumor Routing performs fewer 
simultaneous transmissions than there are agents in the 
system. Since the number of agents is small, compared to the 
number of nodes, this should not lead to a high collision rate. 
But reliable hop delivery is required, and there may be 
significant overhead involved in dealing with collisions. 

● Asynchronous Events – currently in the simulations, all 
events happen simultaneously. For most applications, 
however, events are distributed in time, as well as space. This 
algorithm would favor older events, and it would be 
interesting to study how the rate of events affects the 
performance of Rumor Routing. 

● Non Localized Events - this paper focused on localized 
events, of a fixed size, but the algorithm allows for a much 
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broader definition of an event. An event can be distributed 
through the entire network, but only detected by some of the 
nodes. It does not have to be bound to a sensor reading, and 
can simply represent node capabilities. This algorithm, for 
example, can be used to route queries to nodes that have a 
camera, and enough energy to use it. Since each node 
decides which events it has observed, there is a lot of 
flexibility in using the events for all sorts of data centric 
queries. Although the simulations showed this algorithm to 
be successful in localized events, it would make sense for it 
to be even more so in a distributed one. This will be tested in 
the future. 

● Non-random Query Pattern - the traffic pattern used for 
running queries on the network was randomly generated for 
the simulations in this paper. This assumes that any node is 
likely to request data on any event. In reality, it could be that 
the frequency of queries is not uniformly distributed. In 
many applications, it is more likely that a node closer to the 
event will want to query it, since most algorithms will tend to 
perform local computations where possible. On the other 
hand, local flooding may be a better approach to use when 
close-by nodes need to send a query to an event. Rumor 
Routing, than, can become a method for allowing far away 
nodes to efficiently query events. 

 

6.2 Algorithm Design Alternatives 
● Non Random Next Hop Selection - currently, agents 

randomly pick their next hop, constrained by the 
straightening algorithm. There may be smarter ways of 
deciding where the agent should go. If localization 
information is present, it can attempt to maximize the 
probability of a crossing by trying to divide the network into 
equal halves. Agents can leave information about the 
frequency of trails they have encountered in a remote part of 
the network, and other agents can try to move toward the less 
explored regions. 

● Use of Constrained Flooding - queries are randomly 
forwarded until they find a path to the target. Doing limited 
floods may provide for a more efficient path finding method. 
This creates a problem of finding which queries to prune 
after the flood. More than one query can also be generated, 
creating a higher likelihood of delivery, but at a higher 
energy cost per query.  

● Parameter Setting Exploration - finding optimal parameters 
for a particular application is very important. As this paper 
shows, the event and query pattern has significant effect on 
the algorithm performance, and thus, optimal parameter 
values. Discovering whether the parameters can be tuned 
gradually by individual nodes through local observations, or 
approximated based on a model of the event and traffic 
patterns, is another important area that requires more 
research. 

 
After some additional exploration, we plan to implement Rumor 
Routing on our wireless testbed at which time additional issues 
will undoubtedly arise. 
 

7. CONCLUSION 
There is an obvious need for delivering queries to events in the 
network, and large costs associated with both flooding the query, 
or alternatively, establishing a global coordinate system for 
geographic routing. Simulations show that the Rumor Routing 
algorithm provides a good method for delivering queries to events 
in large networks under a wide range of conditions, with energy 
requirements lower than the alternatives. It is designed to be 
tunable to different application requirements, and be adjusted to 
support different query to event ratios, successful delivery rates, 
and route repair. Furthermore, it is able to handle node failure 
gracefully, degrading its delivery rate linearly with the number of 
failed nodes. It remains for future work to develop appropriate 
methods for tuning the algorithm parameters. 
There is an obvious need for delivering queries to events in the 
network, and large costs associated with flooding queries. When a 
geographic structure exists in the data, geographic coordinates 
and geo-routing [18][11] can be used effectively to reduce interest 
and data propagation overhead. However, when interests are 
expressed in terms of non-geographic attributes (such as searching 
for high concentrations of a particular chemical, or acoustic 
events that match a particular signature), geographic routing does 
not apply. Simulations show that the Rumor Routing algorithm 
may provide a powerful and efficient method for delivering 
queries to events in large networks under a wide range of 
conditions. It is designed to be tunable to different application 
requirements, and be adjusted to support different query to event 
ratios, delivery rates, and route repair. Furthermore, it is able to 
handle node failure gracefully, degrading its delivery rate linearly 
with the number of failed nodes. It remains for future work to 
develop appropriate methods for tuning the algorithm parameters 
and to verify the power and efficiency of the scheme first with real 
sensor-data sets, and ultimately in real, not simulated, systems. 
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APENDIX A: RumorRouting Pseudo-Code 
 

NODE.EVENTS <- {} 
NODE.NEIGHBORS <- {} 
broadcast "hello" packet with nodeId 
 
repeat for ever 
 if sensors detect event E 
  call eventDetected(E) 
 if "hello" packet received 
  neighbors <- neighbors U neihborID 
 if "agent" packet received 
  call agentReceived(AGENT, SOURCE) 
 if "query" packet receieved 
  call queryReceived(QUERY, SOURCE) 
 
eventDetected(E) 
 NODE.EVENTS[E].DISTANCE <- 0 
 create new agent A 
 AGENT.EVENTS = {} 
  AGENT.NUMHOPS=0 
 // send the agent to your self 
 ForwardAgent(NODE.ID) 

 
agentReceived(AGENT,SOURCE) 
 AGENT.NUMHOPS <- AGENT.NUMHOPS+1 
  
 // update the node's events table based on the agent's 
 foreach event named E in AGENT.EVENTS 
  if (NODE.EVENTS does not contain E) OR (NODE.EVENTS[E].NUMHOPS > AGENT.EVENTS[E])  
   NODE.EVENTS[E].DISTANCE <- AGENT.NUMHOPS - AGENT.EVENTS[E].VISIT_TIME 
   AGENT.EVENTS[E].DIRECTION <- SOURCE 
  
 // update the agent's events table based on the node's 
 foreach event named E in NODE.EVENTS 
  AGENT.EVENTS[E].VISIT_TIME <- (- NODE.EVENTS[E].DISTANCE) 
  
 if AGENT.NUMHOPS < AGENT_TTL 
  DESTINATION <- pick neighbor based on agent forwarding policy 
  forwardAgent(AGENT,DESTINATION) 

 
queryReceived(QUERY,SOURCE) 
 QUERY.TTL <- QUERY.TTL - 1 
 if NODE.EVENTS[QUERY.EVENT_NAME].DISTANCE=0  
  // the query reached a valid destination 
  handleValidQuery(QUERY) 
 
 else if NODE.EVENTS[QUERY.EVENT_NAME].DISTANCE > 0 
  // the node has a path to the event 
  forwardQuery(QUERY,NODE.EVENTS[QUERY.EVENT_NAME].DIRECTION) 
 
 else 
  DESTINATION <- pick neighbor based on query forwarding policy 
  forwardQuery(QUERY,DESTINATION) 
 
Forwarding policies can range from simple random schemes, to ones trying to optimize the path intersection probabilities. In the simulations, a 
simple heuristic was used to "straighten" paths. Each packet kept a small history of the nodes it has visited and avoided them as potential 
destinations. Usually only a few nodes need to be remembered since a straight path will move the packet out of their territory in a few hops
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