
TinyOS: An Operating System for Sensor Networks

Philip Levis1, Sam Madden1,2,3, Joseph Polastre1, Robert Szewczyk1, Kamin
Whitehouse1, Alec Woo1, David Gay2, Jason Hill4, Matt Welsh2,5, Eric Brewer1

and David Culler1

1 EECS Department, University of California, Berkeley, Berkeley, California 94720{pal,
madden, polastre, szewczyk, kamin, awoo, brewer,
culler }@cs.berkeley.edu

2 Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, California 94704
{madden, dgay, mdw }@intel-research.net

3 CSAIL, MIT, Cambridge, MA 02139,madden@csail.mit.edu
4 JLH Labs, 35231 Camino Capistrano, Capistrano Beach, CA 92624,

jhill@jlhlabs.com
5 Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA

02138,mdw@eecs.harvard.edu

Abstract

We present TinyOS, a flexible, application-specific operating system for sensor networks. Sen-
sor networks consist of (potentially) thousands of tiny, low-power nodes, each of which ex-
ecute concurrent, reactive programs that must operate with severe memory and power con-
straints. The sensor network challenges of limited resources, event-centric concurrent appli-
cations, and low-power operation drive the design of TinyOS. Our solution combines flexible,
fine-grain components with an execution model that supports complex yet safe concurrent op-
erations. TinyOS meets these challenges well and has become the platform of choice for sensor
network research; it is in use by over a hundred groups worldwide, and supports a broad range
of applications and research topics. We provide a qualitative and quantitative evaluation of
the system, showing that it supports complex, concurrent programs with very low memory
requirements (many applications fit within 16KB of memory, and the core OS is 400 bytes)
and efficient, low-power operation. We present our experiences with TinyOS as a platform for
sensor network innovation and applications.

1 Introduction

Advances in networking and integration have enabled small, flexible, low-cost nodes
that interact with their environment and with each other through sensors, actuators
and communication. Single-chip systems are now emerging that integrate a low-
power CPU and memory, radio or optical communication [75], and MEMS-based



2 TinyOS Team

on-chip sensors. The low cost of these systems enables embedded networks of thou-
sands of nodes [18] for applications ranging from environmental and habitat moni-
toring [11, 51], seismic analysis of structures [10], and object localization and track-
ing [68].

Sensor networks are a very active research space, with ongoing work on net-
working [22, 38, 83], application support [25, 27, 49], radio management [8, 84],
and security [9, 45, 61, 81], as a partial list. A primary goal of TinyOS is to enable
and accelerate this innovation.

Four broad requirements motivate the design of TinyOS:

1) Limited resources:Motes have very limited physical resources, due to the goals
of small size, low cost, and low power consumption. Current motes consist of about
a 1-MIPS processor and tens of kilobytes of storage. We do not expect new tech-
nology to remove these limitations: the benefits of Moore’s Law will be applied to
reduce size and cost, rather than increase capability. Although our current motes are
measured in square centimeters, a version is in fabrication that measures less than
5 mm2.

2) Reactive Concurrency:In a typical sensor network application, a node is respon-
sible for sampling aspects of its environment through sensors, perhaps manipulating
it through actuators, performing local data processing, transmitting data, routing data
for others, and participating in various distributed processing tasks, such as statistical
aggregation or feature recognition. Many of these events, such as radio management,
require real-time responses. This requires an approach to concurrency management
that reduces potential bugs while respecting resource and timing constraints.

3) Flexibility: The variation in hardware and applications and the rate of innovation
require a flexible OS that is both application-specific to reduce space and power,
and independent of the boundary between hardware and software. In addition, the
OS should support fine-grain modularity and interpositioning to simplify reuse and
innovation.

4) Low Power: Demands of size and cost, as well as untethered operation make low-
power operation a key goal of mote design. Battery density doubles roughly every 50
years, which makes power an ongoing challenge. Although energy harvesting offers
many promising solutions, at the very small scale of motes we can harvest only
microwatts of power. This is insufficient for continuous operation of even the most
energy-efficient designs. Given the broad range of applications for sensor networks,
TinyOS must not only address extremely low-power operation, but also provide a
great deal of flexibility in power-management and duty-cycle strategies.

In our approach to these requirements we focus on two broad principles:

Event Centric:Like the applications, the solution must be event centric. The normal
operation is the reactive execution of concurrent events.

Platform for Innovation:The space of networked sensors is novel and complex: we
therefore focus on flexibility and enabling innovation, rather then the “right” OS
from the beginning.



TinyOS: An Operating System for Sensor Networks 3

TinyOS is a tiny (fewer than 400 bytes), flexible operating system built from a
set of reusable components that are assembled into an application-specific system.
TinyOS supports an event-driven concurrency model based on split-phase interfaces,
asynchronousevents, and deferred computation calledtasks. TinyOS is implemented
in the NesC language [24], which supports the TinyOS component and concurrency
model as well as extensive cross-component optimizations and compile-time race
detection. TinyOS has enabled both innovation in sensor network systems and a wide
variety of applications. TinyOS has been under development for several years and is
currently in its third generation involving several iterations of hardware, radio stacks,
and programming tools. Over one hundred groups worldwide use it, including several
companies within their products.

This paper details the design and motivation of TinyOS, including its novel ap-
proaches to components and concurrency, a qualitative and quantitative evaluation
of the operating system, and the presentation of our experience with it as a platform
for innovation and real applications. This paper makes the following contributions.
First, we present the design and programming model of TinyOS, including support
for concurrency and flexible composition. Second, we evaluate TinyOS in terms of
its performance, small size, lightweight concurrency, flexibility, and support for low
power operation. Third, we discuss our experience with TinyOS, illustrating its de-
sign through three applications: environmental monitoring, object tracking, and a
declarative query processor. Our previous work on TinyOS discussed an early sys-
tem architecture [30] and language design issues [24], but did not present the operat-
ing system design in detail, provide an in-depth evaluation, or discuss our extensive
experience with the system over the last several years.

Section 2 presents an overview of TinyOS, including the component and execu-
tion models, and the support for concurrency. Section 3 shows how the design meets
our four requirements. Sections 4 and 5 cover some of the enabled innovations and
applications, while Section 6 covers related work. Section 7 presents our conclusions.

2 TinyOS

TinyOS has a component-based programming model, codified by the NesC lan-
guage [24], a dialect of C. TinyOS is not an OS in the traditional sense; it is a
programming framework for embedded systems and set of components that enable
building an application-specific OS into each application. A typical application is
about 15K in size, of which the base OS is about 400 bytes; the largest application,
a database-like query system, is about 64K bytes.

2.1 Overview

A TinyOS program is a graph of components, each of which is an independent
computational entity that exposes one or moreinterfaces. Components have three
computational abstractions:commands, events, andtasks. Commands and events are



4 TinyOS Team

Interface Description
ADC Sensor hardware interface
Clock Hardware clock
EEPROMRead/Write EEPROM read and write
HardwareId Hardware ID access
I2C Interface to I2C bus
Leds Red/yellow/green LEDs
MAC Radio MAC layer
Mic Microphone interface
Pot Hardware potentiometer for transmit power
Random Random number generator
ReceiveMsg Receive Active Message
SendMsg Send Active Message
StdControl Init, start, and stop components
Time Get current time
TinySec Lightweight encryption/decryption
WatchDog Watchdog timer control

Fig. 1. Core interfaces provided by TinyOS.

mechanisms for inter-component communication, while tasks are used to express
intra-component concurrency.

A commandis typically a request to a component to perform some service, such
as initiating a sensor reading, while aneventsignals the completion of that service.
Events may also be signaled asynchronously, for example, due to hardware interrupts
or message arrival. From a traditional OS perspective, commands are analogous to
downcalls and events to upcalls. Commands and events cannot block: rather, a re-
quest for service issplit phasein that the request for service (the command) and the
completion signal (the corresponding event) are decoupled. The command returns
immediately and the event signals completion at a later time.

Rather than performing a computation immediately, commands and event han-
dlers may post atask, a function executed by the TinyOS scheduler at a later time.
This allows commands and events to be responsive, returning immediately while
deferring extensive computation to tasks. While tasks may perform significant com-
putation, their basic execution model is run-to-completion, rather than to run in-
definitely; this allows tasks to be much lighter-weight than threads. Tasks represent
internal concurrency within a component and may only access state within that com-
ponent. The standard TinyOS task scheduler uses a non-preemptive, FIFO scheduling
policy; Section 2.3 presents the TinyOS execution model in detail.

TinyOS abstracts all hardware resources as components. For example, calling
the getData() command on a sensor component will cause it to later signal a
dataReady() event when the hardware interrupt fires. While many components
are entirely software-based, the combination of split-phase operations and tasks
makes this distinction transparent to the programmer. For example, consider a com-
ponent that encrypts a buffer of data. In a hardware implementation, the command
would instruct the encryption hardware to perform the operation, while a software
implementation would post a task to encrypt the data on the CPU. In both cases an
event signals that the encryption operation is complete.



TinyOS: An Operating System for Sensor Networks 5

The current version of TinyOS provides a large number of components to appli-
cation developers, including abstractions for sensors, single-hop networking, ad-hoc
routing, power management, timers, and non-volatile storage. A developer composes
an application by writing components and wiring them to TinyOS components that
provide implementations of the required services. Section 2.2 describes how devel-
opers write components and wire them in NesC. Figure 1 lists a number of core
interfaces that are available to application developers. Many different components
may implement a given interface.

2.2 Component Model

TinyOS’s programming model, provided by the NesC language, centers around the
notion ofcomponentsthat encapsulate a specific set of services, specified byinter-
faces. TinyOS itself simply consists of a set of reusable system components along
with a task scheduler. An application connects components using awiring specifi-
cation that is independent of component implementations. This wiring specification
defines the complete set of components that the application uses.

The compiler eliminates the penalty of small, fine-grained components by whole-
program (application plus operating system) analysis and inlining. Unused compo-
nents and functionality are not included in the application binary. Inlining occurs
across component boundaries and improves both size and efficiency; Section 3.1
evaluates these optimizations.

TimerM

StdControl Timer

HWClock

module TimerM {
provides {

interface StdControl;
interface Timer[uint8_t id];

}
uses interface Clock;

}
implementation {

... a dialect of C ...
}

Fig. 2. Specification and graphical depiction of theTimerM component.Provided inter-
faces are shown above theTimerM component and used interfaces are below. Downward
arrows depict commands and upward arrows depict events.

A component has two classes of interfaces: those itprovidesand those ituses.
These interfaces define how the component directly interacts with other components.
An interface generally models some service (e.g., sending a message) and is specified
by aninterface type. Figure 2 shows a simplified form of theTimerM component, part
of the TinyOS timer service, that provides theStdControl andTimer interfaces
and uses aClock interface (all shown in Figure 3). A component can provide or
use the same interface type several times as long as it gives each instance a separate
name.



6 TinyOS Team

Interfaces arebidirectionaland contain bothcommandsandevents. A command
is a function that is implemented by the providers of an interface, an event is a func-
tion that is implemented by its users. For instance, theTimer interface (Figure 3)
definesstart andstop commands and afired event. Although the interaction
between the timer and its client could have been provided via two separate inter-
faces (one for its commands and another for its events), grouping them in the same
interface makes the specification much clearer and helps prevent bugs when wiring
components together.

interface StdControl {
command result_t init();
command result_t start();
command result_t stop();

}

interface Timer {
command result_t start(char type, uint32_t interval);
command result_t stop();
event result_t fired();

}

interface Clock {
command result_t setRate(char interval, char scale);
event result_t fire();

}

interface SendMsg {
command result_t send(uint16_t address,

uint8_t length,
TOS_MsgPtr msg);

event result_t sendDone(TOS_MsgPtr msg,
result_t success);

}

Fig. 3. Sample TinyOS interface types.

NesC has two types of components:modulesandconfigurations. Modules pro-
vide code and are written in a dialect of C with extensions for calling and implement-
ing commands and events. A module declares private state variables and data buffers,
which only it can reference. Configurations are used to wire other components to-
gether, connecting interfaces used by components to interfaces provided by others.
Figure 4 illustrates the TinyOS timer service, which is a configuration (TimerC )
that wires the timer module (TimerM ) to the hardware clock component (HWClock).
Configurations allow multiple components to be aggregated together into a single
“supercomponent” that exposes a single set of interfaces. For example, the TinyOS
networking stack is a configuration wiring together 21 separate modules and 10 sub-
configurations.

Each component has its own interface namespace, which it uses to refer to the
commands and events that it uses. When wiring interfaces together, a configuration
makes the connection between the local name of an interface used by one component
to the local name of the interface provided by another. That is, a component invokes
an interface without referring explicitly to its implementation. This makes it easy to



TinyOS: An Operating System for Sensor Networks 7

HWClock

Clock

TimerC

TimerM

Clock

StdControl Timer

StdControl Timer configuration TimerC {
provides {

interface StdControl;
interface Timer[uint8_t id];

}
}
implementation {

components TimerM, HWClock;

StdControl = TimerM.StdControl;
Timer = TimerM.Timer;

TimerM.Clk -> HWClock.Clock;
}

Fig. 4. TinyOS’s Timer Service: theTimerC configuration.

perform interpositioning by introducing a new component in the component graph
that uses and provides the same interface.

Interfaces can be wired multiple times; for example, in Figure 5 theStdControl

interface ofMain is wired toPhoto , TimerC , andMultihop . This fan-out is trans-
parent to the caller. NesC allows fan-out as long as the return type has a function for
combining the results of all the calls. For example, forresult t , this is a logical-
AND; a fan-out returns failure if any subcall fails.

A component can provide aparameterized interfacethat exports many instances
of the same interface, parameterized by some identifier (typically a small integer).
For example, the theTimer interface in Figure 2 is parameterized with an 8-bitid ,
which is passed to the commands and events of that interface as an extra parameter.
In this case, the parameterized interface allows the singleTimer component to im-
plement multiple separate timer interfaces, one for each client component. A client
of a parameterized interface must specify the ID as a constant in the wiring configu-
ration; to avoid conflicts in ID selection, NesC provides a specialunique keyword
that selects a unique identifier for each client.

Every TinyOS application is described by atop-level configurationthat wires to-
gether the components used. An example is shown graphically in Figure 5:SurgeC

is a simple application that periodically (TimerC ) acquires light sensor readings
(Photo ) and sends them back to a base station using multi-hop routing (Multihop ).

NesC imposes some limitations on C to improve code efficiency and robustness.
First, the language prohibits function pointers, allowing the compiler to know the
precise call graph of a program. This enables cross-component optimizations for en-
tire call paths, which can remove the overhead of cross-module calls as well as inline
code for small components into its callers. Section 3.1 evaluates these optimizations
on boundary crossing overheads. Second, the language does not support dynamic
memory allocation; components statically declare all of a program’s state, which
prevents memory fragmentation as well as runtime allocation failures. The restric-
tion sounds more onerous than it is in practice; the component abstraction eliminates



8 TinyOS Team

Leds

LedsC

StdControl ADC

Photo

StdControl

Multihop

SendMsg

TimerC

StdControl Timer

StdControl

SurgeM

ADC Timer LedsSendMsg

SurgeC

Main

StdControl

Fig. 5. The top-level configuration for the Surge application.

many of the needs for dynamic allocation. In the few rare instances that it is truly
needed (e.g., TinyDB, discussed in Section 5.3), a memory pool component can be
shared by a set of cooperating components.

2.3 Execution Model and Concurrency

The event-centric domain of sensor networks requires fine-grain concurrency; events
can arrive at any time and must interact cleanly with the ongoing computation. This is
a classic systems problem that has two broad approaches: 1) atomically enqueueing
work on arrival to run later, as in Click [41] and most message-passing systems, and
2) executing a handler immediately in the style of active messages [74]. Because
some of these events are time critical, such as start-symbol detection, we chose the
latter approach. NesC can detect data races statically, which eliminates a large class
of complex bugs.

The core of the execution model consists of run-to-completiontasksthat rep-
resent the ongoing computation, and interrupt handlers that are signaled asyn-
chronously by hardware. Tasks are an explicit entity in the language; a program
submits a task to the scheduler for execution with thepost operator. The sched-
uler can execute tasks in any order, but must obey the run-to-completion rule. The
standard TinyOS scheduler follows a FIFO policy, but we have implemented other
policies including earliest-deadline first.

Because tasks are not preempted and run to completion, they are atomic with
respect to each other. However, tasks are not atomic with respect to interrupt handlers
or to commands and events they invoke. To facilitate the detection of race conditions,
we distinguish synchronous and asynchronous code:

Synchronous Code (SC):code that is only reachable from tasks.
Asynchronous Code (AC):code that is reachable from at least one interrupt
handler.



TinyOS: An Operating System for Sensor Networks 9

The traditional OS approach toward AC is to minimize it and prevent user-level
code from being AC. This would be too restrictive for TinyOS. Component writers
need to interact with a wide range of real-time hardware, which is not possible in
general with the approach of queuing work for later. For example, in the networking
stack there are components that interface with the radio at the bit level, the byte level,
and via hardware signal-strength indicators. A primary goal is to allow developers
to build responsive concurrent data structures that can safely share data between AC
and SC; components often have a mix of SC and AC code.

Although non-preemption eliminates races among tasks, there are still potential
races between SC and AC, as well as between AC and AC. In general, any update to
shared state that isreachable from ACis a potential data race. To reinstate atomicity
in such cases, the programmer has two options: convert all of the conflicting code
to tasks (SC only), or useatomic sectionsto update the shared state. An atomic
section is a small code sequence that NesC ensures will run atomically. The current
implementation turns off interrupts during the atomic section and ensures that it has
no loops. Section 3.2 covers an example use of an atomic section to remove a data
race. The basic invariant NesC must enforce is as follows:

Race-Free Invariant: Any update to shared state is either SC-only or occurs
in an atomic section.

The NesC compiler enforces this invariant at compile time, preventing nearly all data
races. It is possible to introduce a race condition that the compiler cannot detect, but it
must span multiple atomic sections or tasks and use storage in intermediate variables.

The practical impact of data race prevention is substantial. First, it eliminates
a class of very painful non-deterministic bugs. Second, it means that composition
can essentially ignore concurrency. It does not matter which components generate
concurrency or how they are wired together: the compiler will catch any sharing
violations at compile time. Strong compile-time analysis enables a wide variety of
concurrent data structures and synchronization primitives. We have several variations
of concurrent queues and state machines. In turn, this makes it easy to handle time-
critical actions directly in an event handler, even when they update shared state. For
example, radio events are always dealt with in the interrupt handler until a whole
packet has arrived, at which point the handler posts a task. Section 3.2 contains an
evaluation of the concurrency checking and its ability to catch data races.

2.4 Active Messages

A critical aspect of TinyOS’s design is its networking architecture, which we de-
tail here. The core TinyOS communication abstraction is based on Active Messages
(AM) [74], which are small (36-byte) packets associated with a 1-byte handler ID.
Upon reception of an Active Message, a node dispatches the message (using an
event) to one or more handlers that are registered to receive messages of that type.
Handler registration is accomplished using static wiring and a parameterized inter-
face, as described above.



10 TinyOS Team

AM provides an unreliable, single-hop datagram protocol, and provides a uni-
fied communication interface to both the radio and the built-in serial port (for wired
nodes such as basestations). Higher-level protocols providing multihop communi-
cation, larger ADUs, or other features are readily built on top of the AM interface.
Variants of the basic AM stack exist that incorporate lightweight, link-level security
(see Section 4.1). AM’s event-driven nature and tight coupling of computation and
communication make the abstraction well suited to the sensor network domain.

2.5 Implementation Status

TinyOS supports a wide range of hardware platforms and has been used on several
generations of sensor motes. Supported processors include the Atmel AT90L-series,
Atmel ATmega-series, and Texas Instruments MSP-series processors. TinyOS in-
cludes hardware support for the RFM TR1000 and Chipcon CC1000 radios, as well
as as well as several custom radio chipsets. TinyOS applications may be compiled
to run on any of these platforms without modification. Work is underway (by others)
to port TinyOS to ARM, Intel 8051 and Hitachi processors and to support Bluetooth
radios.

TinyOS supports an extensive development environment that incorporates visu-
alization, debugging, and support tools as well as a fine-grained simulation environ-
ment. Desktops, laptops, and palmtops can serve as proxies between sensor networks
and wired networks, allowing integration with server side tools implemented in Java,
C, or MATLAB, as well as interfaces to database engines such as PostgreSQL. NesC
includes a tool that generates code to marshal between Active Message packet for-
mats and Java classes.

TinyOS includes TOSSIM, a high-fidelity mote simulator that compiles directly
from TinyOS NesC code, scaling to thousands of simulated nodes. TOSSIM gives
the programmer an omniscient view of the network and greater debugging capabil-
ities. Server-side applications can connect to a TOSSIM proxy just as if it were a
real sensor network, easing the transition between the simulation environment and
actual deployments. TinyOS also provides JTAG support integrated withgdb for
debugging applications directly on the mote.

3 Meeting the Four Key Requirements

In this section, we show how the design of TinyOS, particularly its component model
and execution model, addresses our four key requirements: limited resources, reac-
tive concurrency, flexibility and low power. This section quantifies basic aspects of
resource usage and performance, including storage usage, execution overhead, ob-
served concurrency, and effectiveness of whole-system optimization.

3.1 Limited Resources

We look at three metrics to evaluate whether TinyOS applications are lightweight in
space and time: (1) the footprint of real applications should be small, (2) the compiler



TinyOS: An Operating System for Sensor Networks 11

Application Size Structure
Optimized Unoptimized ReductionTasks Events Modules

Blink 683 1791 61% 0 2 8

Blink LEDs

GenericBase 4278 6208 31% 3 21 19

Radio-to-UART packet router

CntToLeds 6121 9449 35% 1 7 13

Display counter on LEDs

CntToRfm 9859 13969 29% 4 31 27

Send counter as radio packet

Habitat monitoring 11415 19181 40% 9 38 32

Periodic environmental sampling

Surge 14794 20645 22% 9 40 34

Ad-hoc multihop routing demo

Maté 23741 25907 8% 15 51 39

Small virtual machine

Object tracking 23525 37195 36% 15 39 32

Track object in sensor field

TinyDB 63726 71269 10% 18 193 91

SQL-like query interface

Fig. 6. Size and structure of selected TinyOS applications.

should reduce code size through optimization, and (3) the overhead for fine-grain
modules should be low.

Absolute Size:A TinyOS program’s component graph defines which components it
needs to work. Because components are resolved at compile time, compiling an app-
lication builds an application-specific version of TinyOS: the resulting image con-
tains exactly the required OS services.

As shown in Figure 6, TinyOS and its applications are small. The base TinyOS
operating system is less than 400 bytes and associated C runtime primitives (includ-
ing floating-point libraries) fit in just over 1KB.Blink represents the footprint for a
minimal application using the base OS and a primitive hardware timer.CntToLeds
incorporates a more sophisticated timer service which requires additional memory.
GenericBase captures the footprint of the radio stack whileCntToRfm incor-
porates both the radio stack and the generic timer, which is the case for many real
applications. Most applications fit in less than 16KB, while the largest TinyOS app-
lication, TinyDB, fits in about 64KB.

Footprint Optimization: TinyOS goes beyond standard techniques to reduce code
size (e.g., stripping the symbol table). It uses whole-program compilation to prune
dead code, and cross-component optimizations remove redundant operations and
module-crossing overhead. Figure 6 shows the reduction in size achieved by these
optimizations on a range of applications. Size improvements range from 8% for
Maté, to 40% for habitat monitoring, to over 60% for simple applications.

Component Overhead:To be efficient, TinyOS must minimize the overhead for
module crossings. Since there are no virtual functions or address-space crossings,



12 TinyOS Team

Cycles Optimized Unoptimized Reduction
Work 371 520 29%
Boundary crossing 109 258 57%

Non-interrupt 8 194 95%
Interrupt 101 64 -36%

Total 480 778 38%

Fig. 7. Optimization effects on clock event handling.This figure shows the breakdown, in
CPU cycles, for both work and boundary crossing for clock event handling, which requires
7 module crossings. Optimization reduces the overall cycle count by 38%.

the basic boundary crossing is at most a regular procedure call. On Atmel-based
platforms, this costs about eight clock cycles.

Using whole-program analysis, NesC removes many of these boundary cross-
ings and optimizes entire call paths by applying extensive cross-component opti-
mizations, including constant propagation and common subexpression elimination.
For example, NesC can typically inline an entire component into its caller.

In the TinyOS timer component, triggering a timer event crosses seven compo-
nent boundaries. Figure 7 shows cycle counts for this event chain with and without
cross-component optimizations. The optimization saves not only 57% of the bound-
ary overhead, but also 29% of the work, for a total savings of 38%. The increase in
the crossing overhead for the interrupt occurs because the inlining requires the han-
dler to save more registers; however, the total time spent in the handler goes down.
The only remaining boundary crossing is the one for posting the task at the end of
the handler.

Anecdotally, the code produced via whole-program optimization is smaller and
faster than not only unoptimized code, but also the original hand-written C code that
predates the NesC language.

3.2 Reactive Concurrency

We evaluate TinyOS’s support for concurrency by looking at four metrics: (1) the
concurrency exhibited by applications, (2) our support for race detection at compile
time, (3) context switching times, and (4) the handling of concurrent events with
real-time constraints.

Exhibited Concurrency: TinyOS’s component model makes it simple to express the
complex concurrent actions in sensor network applications. The sample applications
in Figure 6 have an average of 8 tasks and 47 events, each of which represents a
potentially concurrent activity. Moreover, these applications exhibit an average of
43% of the code (measured in bytes) reachable from an interrupt context.

As an example of a high-concurrency application, we consider TinyDB, cov-
ered in Section 5.3, an in-network query processing engine that allows users to pose
queries that collect, combine and filter data from a network of sensors. TinyDB sup-
ports multiple concurrent queries, each of which collects data from sensors, applies
some number of transformations, and sends it up a multihop routing tree to a bases-
tation where the user receives results. The 18 tasks and 193 events within TinyDB



TinyOS: An Operating System for Sensor Networks 13

Component Type Data-race variables
RandomLFSR System 1
UARTM System 1
AMStandard System 2
AMPromiscious System 2
BAPBaseM Application 2
ChirpM Application 2
MicaHighSpeedRadioM System 2
TestTimerM Application 2
ChannelMonC System 3
NoCrcPacket System 3
OscilloscopeM Application 3
QueuedSend System 3
SurgeM Application 3
SenseLightToLogM Application 3
TestTemp Application 3
MultihopM System 10
eepromM System 17
TinyAlloc System 18
IdentC Application 23
Total 103

Fig. 8. Component locations of race condition variables.

perform several concurrent operations, such as maintenance of the routing tables,
multihop routing, time synchronization, sensor recalibration, in addition to the core
functionality of sampling and processing sensor data.

Race Detection:The NesC compiler reports errors if shared variables may be in-
volved in a data race. To evaluate race detection, we examine the reported errors for
accuracy.

Initially, TinyOS included neither an explicitatomic statement nor the analysis
to detect potential race conditions; both TinyOS and its applications had many data
races. Once race detection was implemented, we applied detection to every appli-
cation in the TinyOS source tree, finding 156 variables that potentially had a race
condition. Of these, 53 were false positives (discussed below) and 103 were genuine
data races, a frequency of about six per thousand code statements. We fixed each of
these bugs by moving code into tasks or by usingatomic statements. We then tested
each application and verified that the presence of atomic sections did not interfere
with correct operation.

Figure 8 shows the locations of data races in the TinyOS tree. Half of the races
existed in system-level components used by many applications, while the other half
were application specific.MultihopM , eepromM, andTinyAlloc had a dispropor-
tionate number of races due to the amount of internal state they maintain through
complex concurrent operations.IdentC tracks node interactions, records them in
flash, and periodically sends them to the basestation; it has complex concurrency,
lots of state, and was written before most of the concurrency issues were well under-
stood. The NesC version is race free.

The finite-state-machine style of decomposition in TinyOS led to the most com-
mon form of bug, a non-atomic state transition. State transitions are typically im-



14 TinyOS Team

/* Contains a race: */ /* Fixed version: */
if (state == IDLE) { uint8_t oldState;

state = SENDING; atomic {
count++; oldState = state;
// send a packet if (state == IDLE) {

} state = SENDING;
}

}
if (oldState == IDLE) {

count++;
// send a packet

}

Fig. 9. Fixing a race condition in a state transition.

plemented using a read-modify-write of the state variable, which must be atomic. A
canonical example of this race is shown in Figure 9, along with the fix.

The original versions of the communication,TinyAlloc and EEPROM com-
ponents contained large numbers of variable accesses in asynchronous code. Rather
than using large atomic sections, which might decrease overall responsiveness, we
promoted many of the offending functions to synchronous code by posting a few
additional tasks.

False positives fell into three major categories: state-based guards, buffer swaps,
and causal relationships. The first class, state-based guards, occurred when access
to a module variable is serialized at run time by a state variable. The above state
transition example illustrates this; in this function, the variablecount is safe due to
the monitor created bystate . Buffer swaps are a controlled kind of sharing in which
ownership is passed between producer and consumer; it is merely by this convention
that there are no races, so it is in fact useful that NesC requires the programmer to
check them. The third class of false positives occurs when an event conflicts with the
code that caused it to execute, but because the two never overlap in time there is no
race. However, if there are other causes for the event, then there is a race, so these are
also worth explicitly checking. In all cases, thenorace type qualifier can be used to
remove the warnings.

Context Switches:In TinyOS, context switch overhead corresponds to both the cost
of task scheduling and interrupt handler overhead. These costs are shown in Fig-
ure 10 based on hand counts and empirical measurements. The interrupt overhead
consists of both switching overhead and function overhead of the handler, which
varies with the number of saved registers.

Overhead Time (clock cycles)
Interrupt Switching 8
Interrupt Handler Cost 26-74
Task Switching 108

Fig. 10. TinyOS scheduling overhead.



TinyOS: An Operating System for Sensor Networks 15

Real-time Constraints: The real-time requirements in the sensor network domain
are quite different from those traditionally addressed in multimedia and control ap-
plications. Rather than sophisticated scheduling to shed load when many tasks are
ongoing, sensor nodes exhibit bursts of activity and then go idle for lengthy intervals.
Rather than delivering a constant bit rate to each of many flows, we must meet hard
deadlines in servicing the radio channel while processing sensor data and routing
traffic. Our initial platforms required that we modulate the radio channel bit-by-bit
in software. This required tight timing on the transmitter to generate a clean wave-
form and on the receiver to sample each bit properly. More recent platforms provide
greater hardware support for spooling bits, but start-symbol detection requires pre-
cise timing and encoding, decoding, and error-checking must keep pace with the
data rate. Our approach of allowing sophisticated handlers has proven sufficient for
meeting these requirements; typically the handler performs the time-critical work
and posts a task for any remaining work. With a very simple scheduler, allowing the
handler to execute snippets of processing up the chain of components allows appli-
cations to schedule around a set of deadlines directly, rather than trying to coerce a
priority scheme to produce the correct ordering. More critical is the need to manage
the contention between the sequence of events associated with communication (the
handler) and the sampling interval of the application (the tasks). Applying whole-
system analysis to verify that all such jitter bounds are met is an area for future
work.

3.3 Flexibility

To evaluate the goal of flexibility, we primarily refer to anecdotal evidence. In ad-
dition to the quantitative goal of fine-grain components, we look at the qualitative
goals of supporting concurrent components, hardware/software transparency, and in-
terposition.

Fine-grained Components:TinyOS allows applications to be constructed from a
large number of very fine-grained components. This approach is facilitated by cross-
module inlining, which avoids runtime overhead for component composition. The
TinyOS codebase consists of 401 components, of which 235 are modules and 166 are
configurations. The 42 applications in the tree use an average of 74 components
(modules and configurations) each. Modules are typically small, ranging from be-
tween 7 and 1898 lines of code (with an average of 134, median of 81).

Figure 11 shows a per-component breakdown of the data and code space used
by each of the components in the TinyOS radio stack, both with and without inlining
applied. The figure shows the relatively small size of each of the components, as well
as the large number of components involved in radio communication. Each of these
components can be selectively replaced, or new components interposed within the
stack, to implement new functionality.

Concurrent Components: As discussed in the previous section, any component
can be the source of concurrency. Bidirectional interfaces and explicit support for
events enable any component to generate events autonomously. In addition, the static



16 TinyOS Team

Component Code Size Data Size
(Sizes in bytes) inlined noninlined

AM 456 654 9

Core Active Messages layer

MicaHighSpeedRadioM 1162 1250 61

Radio hardware interface

NoCRCPacket 370 484 50

Packet framing without CRC

CrcFilter – 34 0

CRC filtering

ChannelMonC 454 486 9

Start symbol detection

RadioTimingC 42 56 0

Timing for start symbol detection

PotM 50 82 1

Transmit power control

SecDedEncoding 662 684 3

Error correction/detection coding

SpiByteFifoC 344 438 2

Low-level byte interface

HPLPotC – 66 0

Hardware potentiometer interface

Fig. 11. Breakdown of code and data size by component in the TinyOS radio stack.A ‘–’
in the inlined column indicates that the corresponding component was entirely inlined. Dead
code elimination has been applied in both cases.

race detection provided by NesC removes the need to worry about concurrency bugs
during composition. Out of our current set of 235 modules, 18 (7.6%) contain at least
one interrupt handler and are thereby sources of concurrency.

Hardware/Software Transparency:The TinyOS component model makes shifting
the hardware/software boundary easy; components can generate events, which may
be software upcalls or hardware interrupts. This feature is used in several ways in the
TinyOS codebase. Several hardware interfaces (such as analog-to-digital conversion)
are implemented using software wrappers that abstract the complexity of initializing
and collecting data from a given sensor hardware component. In other cases, soft-
ware components (such as radio start-symbol detection) have been supplanted with
specialized hardware modules. For example, each of the radios we support has a
different hardware/software boundary, but thesamecomponent structure.

Interposition: One aspect of flexibility is the ability tointerposecomponents be-
tween other components. Whenever a component provides and uses the same inter-
face type, it can be inserted or removed transparently.

One example of this is seen in work at UVA [26], which interposes a component
in the network stack at a fairly low level. Unknown to the applications, this compo-
nent buffers the payload of each message and aggregates messages to the same des-
tination into a single packet. On the receive side, the same component decomposes
such packets and passes them up to the recipients individually. Although remaining



TinyOS: An Operating System for Sensor Networks 17

completely transparent to the application, this scheme can actuallydecreasenetwork
latency by increasing overall bandwidth.

A similar type of interpositioning can be seen in the object tracking application
described in Section 5.2. The routing stack allows the interpositioning of compo-
nents that enable, for example, reliable transmission or duplicate message filtering.
Similarly, the sensor stacks allow the interpositioning of components that implement
weighted-time averaging or threshold detection.

3.4 Low Power

The application-specific nature of TinyOS ensures that no unnecessary functions
consume energy, which is the most precious resource on the node. However, this
aspect alone does not ensure low power operation. We examine three aspects of
TinyOS low power operation support: application-transparent CPU power man-
agement, power management interfaces, and efficiency gains arising from hard-
ware/software transparency.

CPU power usage:The use of split-phase operations and an event-driven execution
model reduces power usage by avoiding spinlocks and heavyweight concurrency
(e.g., threads). To minimize CPU usage, the TinyOS scheduler puts the processor
into a low-power sleep mode whenever the task queue is empty. This decision can be
made very quickly, thanks to run-to-completion semantics of tasks, which maximizes
the time spent in the sleep mode. For example, when listening for incoming packets,
the CPU handles 20000 interrupts per second. On the current sensor hardware, the
CPU consumes 4.6 mA when active and 2.4 mA when idle, and the radio uses 3.9 mA
when receiving. System measurements show the power consumption during both
listening and receiving to be 7.5 mA. The scheduler, which needs to examine the
task queue after every event, still manages to operate in idle mode 44% of the time.

Power-Management Interfaces:The scheduler alone cannot achieve the power lev-
els required for long-term applications; the application needs to convey its runtime
requirements to the system. TinyOS address this requirement through a programming
convention which allows subsystems to be put in a low power idle state. Components
expose aStdControl interface, which includes commands for initializing, start-
ing, and stopping a component and the subcomponents it depends upon. Calling the
stop command causes a component to attempt to minimize its power consumption,
for example, by powering down hardware or disabling periodic tasks. The compo-
nent saves its state in RAM or in nonvolatile memory for later resumption using the
start command. It also informs the CPU about the change in the resources it uses;
the system then uses this information to decide whether deep power saving modes
should be used. This strategy works well: with all components stopped, the base sys-
tem without the sensor board consumes less than 15µA, which is comparable to
self discharge rate of AA alkaline batteries. The node lifetime depends primarily on
the duty cycle and the application requirements; a pair of AA batteries can power
a constantly active node for up to 15 days or a permanently idle node for up to 5
years (battery shelf life). By exposing the start/stop interface at many levels, we en-



18 TinyOS Team

able a range of power management schemes to be implemented, for example, using
power scheduling to disable the radio stack when no communication is expected, or
powering down sensors when not in use.

Hardware/Software Transparency: The ability to replace software components
with efficient hardware implementations has been exploited to yield significant im-
provements in energy consumption in our platform. Recent work [36] has demon-
strated a single-chip mote that integrates the microcontroller, memory, radio trans-
ceiver, and radio acceleration logic into a 5 mm2 silicon die. The standard software
radio stack consumes 3.6 mA (involving about 2 million CPU instructions per sec-
ond); The hardware implementation of these software components consumes less
than 100µA and allows for much more efficient use of microcontroller sleep modes
while providing a 25-fold improvement in communication bit rate.

4 Enabled Innovations

A primary goal for TinyOS is to enable innovative solutions to the systems chal-
lenges presented by networks of resource constrained devices that interact with a
changing physical world. The evaluation against this goal is inherently qualitative.
We describe three subsystems where novel approaches have been adopted that can be
directly related to the features of TinyOS. In particular, TinyOS makes several kinds
of innovations simpler that appear in these examples: 1) cross-layer optimization and
integrated-layer processing (ILP), 2) duty-cycle management for low power, and 3)
a wide-range of implementation via fine-grain modularity.

4.1 Radio Stack

A mote’s network device is often a simple, low-power radio transceiver that has
little or no data buffering and exposes primitive control and raw bit interfaces. This
requires handling many aspects of the radio in software, such as controlling the radio
state, coding, modulating the channel, framing, input sampling, media access control,
and checksum processing. Various kinds of hardware acceleration may be provided
for each of the elements, depending on the specific platform. In addition, received
signal strength can be obtained by sampling the baseband energy level at particular
times. The ability to access these various aspects of the radio creates opportunities
for unusual cross-layer optimization.

Integrated-Layer Processing:TinyOS enables ILP through its combination of fine-
grain modularity, whole-program optimization, and application-specific handlers.
One example is the support for link-layer acknowledgments (acks), which can only
be generated after the checksum has been computed. TinyOS allows the radio stack to
be augmented with addition error checking by simply interposing the checksum com-
ponent between the component providing byte-by-byte radio spooling and the packet
processing component. It is also important to be able to provide link-level acknowl-
edgments so that higher levels can estimate loss rates or implement retransmission,



TinyOS: An Operating System for Sensor Networks 19

however, these acks should be very efficient. The event protocol within the stack that
was developed to avoid buffering at each level allows the checksum computation to
interleave with the byte-level spooling. Thus, the ack can be generated immediately
after receiving the last byte thus the underlying radio component can send the ack
synchronously, i.e. reversing the channel direction without re-arbitration or reacqui-
sition. Note that holding the channel is a real-time operation that is enabled by the
use of sophisticated handlers that traverse multiple layers and components without
data races. This collection of optimizations greatly reduce both latency and power,
and in turn allows shorter timeouts at the sender. Clean modularity is preserved in
the code since these time-critical paths span multiple components.

ILP and flexible modularity have been used in a similar manner to provide flexi-
ble security for confidentiality and authentication [2]. Although link-level security is
important, it can degrade both power and latency. The ability to overlap computation
via ILP helps with the latency, while interposition makes it easy add security trans-
parently as needed. This work also showed that the mechanisms for avoiding copying
or gather/scatter within the stack could be used to substantially modify packet head-
ers and trailers without changing other components in the stack.

A TinyOS radio stack from Yeet al.[83, 84] is an example that demonstrates ILP
by combining 802.11-style media access with transmission scheduling. This allows
a low-duty cycle (similar to TDMA) with flexible channel sharing.

Power Management:Listening on the radio is costly even when not receiving any-
thing, so minimizing duty cycle is important. Traditional solutions utilize some form
of TDMA to turn off the radio for long periods until a reception is likely. TinyOS
allows a novel alternative by supporting fast fine-grain power management. By in-
tegrating fast power management with precise timing, we were able to periodically
sample the radio for very short intervals at the physical layer, looking for a preamble.
This yields the illusion of an always-on radio at a 10% duty cycle while listening,
while avoiding a priori partitioning of the channel bandwidth. Coarse-grain duty cy-
cling can still be implemented at higher levels, if needed.

TinyOS has also enabled an efficient solution to the epidemic wakeup problem.
Since functionality can be placed at different levels within the radio stack, TinyOS
can detect that a wakeup is likely by sampling the energy on the channel, rather
than bring up the ability to actually receive packets. This low-level wake-up only
requires 0.00125% duty cycle [29], a 400-fold improvement over a typical packet-
level protocol. A similar approach has been used to derive network neighborhood
and proximity information [73].

Hardware/Software Transparency: The existence of a variety of radio architec-
tures poses a challenge for system designers due to the wide variation in hard-
ware/software boundaries. There are at least three radio platforms that are supported
in the TinyOS distribution: the 10kbps first-generation RFM, the 40kbps hardware-
accelerated RFM, and the recent 40kbps Chipcon. In addition, UART and I2C stacks
are supported. The hardware-accelerated RFM platform exemplifies how a direct
replacement of bit level processing with hardware achieves higher communication
bandwidth [29]. In the extreme cases, the entire radio stack has been built in pure



20 TinyOS Team

hardware in Spec (mote-on-a-chip) [36], as well as in pure software in TOSSIM [44].
We have also transparently used hardware acceleration for encryption. Stack ele-
ments using a component remain unchanged, whether the component is a thin ab-
straction of a hardware element or a software implementation.

4.2 Time Synchronization and Ranging

Time and location are both critical in sensor networks due to the embodied nature
of sensor nodes; each node has a real, physical relationship with the outside world.
One challenge of network time synchronization is to eliminate sources of jitter such
as media access delay introduced by the radio stack. Traditional layering often hides
the details at the physical layer. Timing protocols often perform round-trip time esti-
mation to account for these errors. TinyOS allows a component to be interposed deep
within the radio stack to signal an event precisely when the first bit of data is trans-
mitted; this eliminates media access delay from calculations. Similarly, receivers
can take a timestamp when they hear the first data bit; comparing these fine-grain
timestamps can reduce time synchronization error to less than a bit time (<25µs).
Although reference broadcast synchronization (RBS) [16] achieves synchronization
accurate to within 4µs without interposition by comparing time stamps of receivers,
it does so at the cost of many packet transmissions and sophisticated analysis.

The ability to interact with the network stack at this low level also enabled pre-
cise time of flight (TOF) measurements for ranging in an ad-hoc localization system
built on TinyOS [76]. A transmitter sends an acoustic pulse with a radio message.
TinyOS’s low context switching overhead enables receivers to check for the acoustic
pulse and the radio message concurrently. Taking the difference between the times-
tamps of the two signals produces an acoustic TOF measurement. TinyOS can accu-
rately measure both arrival times directly in their event handlers, since the handlers
execute immediately; a solution based on queuing the work for later would forfeit
precise timing, which is also true for the time-syncrhonization example above.

The newest version of the ranging application uses a co-processor to control
the acoustic transducer and perform costly localization calculation. Controlling the
acoustic transducer requires real time interactions between the two processors which
is enabled by TinyOS’s low overhead event handling. To exploit parallelism between
the two processors, computation and communication must be overlapped; the split-
phased nature of TinyOS’s AM model makes this trivial.

4.3 Routing

The rigid, non-application specific communication stack found in industrial stan-
dards such as IEEE 802.11 [1] or Bluetooth [7] often limit the design space for rout-
ing protocols. TinyOS’s component model and ease of interposition yield a very flex-
ible communication stack. This opens up a platform for implementing many different
routing protocols such as broadcast based routing [23], probabilistic routing, multi-
path routing [37], geographical routing, reliability based routing [80, 82], TDMA
based routing [14], and directed diffusion [34].



TinyOS: An Operating System for Sensor Networks 21

The large number of routing protocols suggests that sensor network applications
may need to use a diverse set within one communication stack. TinyOS’s parame-
terized interfaces and extensible component model enable a coherent routing frame-
work where an application can route by network address, geographic location, flood-
ing, or along some application specific gradients [69].

4.4 Dynamic Composition and Virtual Machines

In our experience, most sensor network applications utilize a common set of services,
combined in different ways. A system that allows these compositions to be concisely
described could provide much of the flexibility of full reprogramming at a tremen-
dous decrease in communication costs. Maté, a tiny bytecode interpreter that runs on
TinyOS [43], meets this need. It is a single NesC module that sits on top of several
system components, including sensors, the network stack, and non-volatile storage.

Maté presents a virtual stack architecture to the programmer. Instructions include
sensing and radio communication, as well as arithmetic and stack manipulation. Maté
has a set of user-definable instructions. These allow developers to use the VM as a
framework for writing new VM variants, extending the set of TinyOS services that
can be dynamically composed. The virtual architecture hides the split-phased op-
erations of TinyOS behind synchronous instructions, simplifying the programming
interface. This requires the VM to maintain a virtual execution context as a con-
tinuation across split-phase operations. The stack-based architecture makes virtual
context switches trivial, and as contexts are only 78 bytes (statically allocated in a
component), they consume few system resources. Contexts run in response to system
events, such as timers or packet reception.

Programs virally propagate through a network; once a user introduces a single
mote running a new program, the network rapidly and autonomously reprograms it-
self. Mat́e programs are extremely concise (orders of magnitude shorter than their
binary equivalents), conserving communication energy. TinyOS’ event-driven exe-
cution provides a clear set of program-triggering events, and the NesC’s interfaces
allow users to easily change subsystems (such as ad-hoc routing). Maté extends
TinyOS by providing an inexpensive mechanism to dynamically compose programs.
NesC’s static nature allows it to produce highly optimized and efficient codes; Maté
demonstrates that run-time flexibility can be re-introduced quite easily with low over-
head. By eschewing aside the traditional user/kernel boundary, TinyOS allowed other
possibilities to emerge. Maté suggests that the run-time/compile-time boundary in
sensor networks might better be served by a lean bytecode interpreter that sits on top
of a TinyOS substrate.

5 Applications

In this section, we describe three applications that have been built using the TinyOS
platform: an environmental monitoring system, a declarative query processor, and
magnetometer-based object tracking. Each of these applications represents a distinct
set of design goals and exhibits different aspects of the TinyOS design.



22 TinyOS Team

Fig. 12. System architecture for habitat monitoring.

5.1 Habitat Monitoring

Sensor networks enable data collection at a scale and resolution that was previously
unattainable, opening up many new areas of study for scientists. These applications
pose many challenges, including low-power operation and robustness, due to remote
placement and extended operation.

One such application is a habitat monitoring system on Great Duck Island, off
the coast of Maine. Researchers deployed a 35-node network on the island to mon-
itor the presence of Leach’s Storm Petrels in their underground burrows [51]. The
network was designed to run unattended for at least one field season (7–9 months).
Nodes, placed in burrows, monitored light, temperature, relative humidity, pressure,
and passive infrared; the network relayed readings back to a base station with an In-
ternet connection via satellite, to be uploaded to a database. Figure 12 illustrates the
tiered system architecture for this application.

A simple TinyOS program ran on the motes. It periodically (every 68 s) sam-
pled sensors and relayed data to the base-station. To achieve long network lifetimes,
nodes used the power management facilities of TinyOS aggressively, consuming only
35µA in low power state, compared to 18–20 mA when active. Nodes sampled sen-
sors concurrently (using a split-phase data acquisition operation), rather than serially,
resulting in further power reduction. During the 4 months of deployment, the network
collected over 1.2 million sensor readings.



TinyOS: An Operating System for Sensor Networks 23

A specialized gateway node, built using a mote connected to a high-gain antenna,
relayed data from the network to a wired base station. The gateway application was
very small (3090 bytes) and extraordinarily robust: it ran continuously, without fail-
ing, for the entire 4 months of deployment. The gateway required just 2 Watt-hours
of energy per day and was recharged with a 36 in2 solar panel [63]. In compari-
son, an early prototype version of the gateway, an embedded Linux system, required
over 60 Watt-hours of energy per day from a 924 in2 solar panel. The Linux system
failed every 2 to 4 days, while the gateway mote was still operating two months after
researchers lost access to the island for the winter.

5.2 Object Tracking

The TinyOS object-tracking application (OTA) uses a sensor network to detect, lo-
calize and track an object moving through a sensor field; in the prototype, the object
is a remote-controlled car. The object’s movement through the field determines the
actions and communication of the motes. Each mote periodically samples its magne-
tometer; if the reading has changed significantly since the last sample, it broadcasts
the reading to its neighbors. The node with the largest reading change estimates the
position of the target by computing the centroid of its neighbors’ readings. Using ge-
ographic routing [38], the network routes the estimated position to the base-station,
which controls a camera to point at the target. The operation of the tracking applica-
tion is shown in Figure 13.

OTA consists of several distributed services, such as routing, data sharing, time
synchronization, localization, power management, and sensor filtering. Twelve dif-
ferent research groups are collaborating on both the architecture and individual sub-
system implementation. TinyOS execution model enables running these services
concurrently on limited hardware resources. The component model allows for easy
replacement and comparative analysis of individual services. Currently, the reference
implementation consists of 54 components. General purpose services, such as time
synchronization or localization, have many competing implementations, enabled by
different features of TinyOS. Replacement of low-level components used for sensing
allowed OTA to be adapted to track using light values instead of magnetic fields.

Several research groups have successfully implemented application specific ser-
vices within this framework. Huiet al.developed a sentry-based approach [31] that
addresses power management within an object tracking network. Their algorithm
chooses a connected subset of sentry motes, which allows for degraded sensing; the
non-sentry units are placed in a low power state. This service makes extensive use of
the TinyOS power management interfaces, and is shown to reduce energy consump-
tion by 30% with minimal degradation of tracking accuracy.

5.3 TinyDB

Many sensor network users prefer to interact with a network through a high-level,
declarative interface rather than by low-level programming of individual nodes.
TinyDB [50], a declarative query processor built on TinyOS, supports this view, and



24 TinyOS Team

0 1 2 3 4 5 6
0

1

2

3

4

5

6

 (1,1)

 (2,1)

 (3,1)

 (4,1)

 (5,1)

 (1,2)

 (2,2)

 (3,2)

 (4,2)

 (5,2)

 (1,3)

 (2,3)

 (3,3)

 (4,3)

 (5,3)

 (1,4)

 (2,4)

 (3,4)

 (4,4)

 (5,4)

 (1,5)

 (2,5)

 (3,5)

 (4,5)

 (5,5)

Event−triggered Activity in Z−Racer

1)  Z−Racer drives 

2) Broadcast detections
 

3) Send position to
    camera 

Fig. 13. Event-triggered activity in the object tracking application. (1) The vehicle being
tracked drives around position (4,4) (dashed-line); (2) Six nodes broadcast readings (lightened
nodes); (3) Node (4,4) declares itself the leader, aggregates the readings, and routes them to
the base station (dark arrows).

is our largest and most complex application to date. It poses significant challenges
for concurrency control and limited resources.

In TinyDB, queries (expressed in an SQL-like syntax) propagate through the net-
work and perform local data collection and in-network aggregation. Queries specify
only what data the user is interested in and the data collection rate; the user does
not specify any details of query propagation, data collection, or message routing. For
example, the query:

SELECT AVG(light)
FROM sensors
WHERE temp > 100o F
SAMPLE PERIOD 10s

tells the network to provide the average light value over all the nodes with tem-
perature greater than 100o F once every 10 seconds. TinyDB uses in-network aggre-
gation [42, 49] to greatly reduce network bandwidth requirements; this requires that
nodes coordinate to produce the results.

TinyDB relies heavily on TinyOS’component-oriented design, concurrency prim-
itives, and ability to perform cross-layer optimizations. TinyDB consists of compo-
nents that perform query flooding, local data collection, formation of routing trees,
aggregation of query data, and a catalog of available sensor devices and attributes
(such as location) at each node. It uses the routing, data collection, and power man-
agement interfaces of TinyOS, and inter-operates with a variety of implementations
of these services.

TinyOS’s task model meshes well with the concurrency requirements of TinyDB,
which supports multiple simultaneous queries by scheduling a timer for each query
which fires when the next set of results for that query are due. Each timer event posts



TinyOS: An Operating System for Sensor Networks 25

a task to collect and deliver results for the corresponding query. The non-preemptive
nature of tasks and the support for safe concurrent handlers avoid data races despite
extensive information sharing.

One example benefit of cross-layer optimization in TinyDB is message snooping,
which is important for determining the state of neighboring nodes in the network.
Snooping is used to enable query propagation: new nodes joining the network learn
of ongoing queries by snooping for results broadcast by neighbors. This technique
also enables message suppression; a node can avoid sending its local reading if it is
superseded by a message from another node, as in the case of a query requesting the
maximum sensor value in the network.

6 Related Work

Sensor networks have been the basis for work onad hocnetworking [34, 37, 38,
47], data aggregation [33, 49], distributed algorithms [25, 46, 59], and primitives
such as localization [8, 76, 77], and time synchronization [16, 62]. In addition to
our mote platform, a number of low-power sensor systems have been proposed and
developed [3, 4, 12, 39, 55, 56, 64], though few of these systems have addressed
flexible operating systems design. Several projects use more traditional embedded
systems (such as PDAs [16]) or customized hardware [64].

A wide range of operating systems have been developed for embedded systems.
These range from relatively large, general-purpose systems to more compact real-
time executives. In [30] we discuss range of these embedded and real-time systems
in detail. These systems are generally not suitable for extremely resource-constrained
sensor nodes, which mandate very compact, specialized OS designs. Here, we focus
our attention on a number of emerging systems that more closely match the resource
budget and execution model of sensor networks.

Traditional embedded operating systems are typically large (requiring hundreds
of KB or more of memory), general-purpose systems consisting of a binary ker-
nel with a rich set of programming interfaces. Examples include WinCE [52],
QNX [28], PalmOS [60], pSOSystem [79], Neutrino [65], OS-9 [54], LynxOS [48],
Symbian [71], and uClinux [72]. Such OSes target systems with greater CPU and
memory resources than sensor network nodes, and generally support features such
as full multitasking, memory protection, TCP/IP networking, and POSIX-standard
APIs that are undesirable (both in terms of overhead and generality) for sensor net-
work nodes.

There is also a family of smaller real-time executives, such as CREEM [40],
OSEKWorks [78], and Ariel [53], that are closer in size to TinyOS. These systems
support a very restrictive programming model which is tailored for specialized app-
lication domains such as consumer devices and automotive control.

Several other small kernels have been developed that share some features in com-
mon with TinyOS. These systems do not support the degree of modularity or flexibil-
ity in TinyOS’s design, nor have they been used for as wide a range of applications.
EMERALDS [85] is a real-time microkernel, requiring about 13KB of code, that



26 TinyOS Team

supports multitasking using a hybrid EDF and rate-monotonic scheduler. Much of
this work is concerned with reducing overheads for semaphores and IPC. AvrX [5]
is a small kernel for the AVR processor, written in assembly, that provides multitask-
ing, semaphores, and message queues in around 1.5 KB of memory. Nut/OS [15]
and NESOS [58] are small kernels that provide non-preemptive multitasking, sim-
ilar in vein to the TinyOS task model, but use somewhat more expensive mecha-
nisms for interprocess communication than TinyOS’s lean cross-module calls. The
BTNode OS [39] consists mainly of library routines to interface to hardware and a
Bluetooth communication stack, but supports an event-driven programming model
akin to TinyOS. Modules can post a single-byte event to a dispatcher, which fires the
(single) handler registered for that event type.

A number of operating systems have explored the use of component architec-
tures. Click [41], Scout [57], and thex-kernel [32] are classic examples of modular
systems, but do not address the specific needs of low-power, low-resource embed-
ded systems. The units [19] component model, supported by the Knit [67] language
in OSKit [20], is similar to that in NesC. In Knit, components provide and use in-
terfaces, and new components can be assembled out of existing ones. Unlike NesC,
however, Knit lacks bidirectional interfaces and static analyses such as data race de-
tection.

Several embedded systems have taken a component-oriented approach for applica-
tion-specific configurability [21]. Many of these systems use heavyweight compo-
sition mechanisms, such as COM or CORBA, and several support runtime compo-
nent instantiation or interpositioning. PURE [6], eCos [66], and icWORKSHOP [35]
more closely match TinyOS’s goal of lightweight, static composition. These systems
consist of a set of components that are wired together (either manually or using a
composition tool) to form an application. Components vary in size from fine-grained,
specialized objects (as in icWORKSHOP) to larger classes and packages (PURE and
eCos). VEST [70] is a proposed toolkit for building component-based embedded
systems that performs extensive static analyses of the system, such as schedulability,
resource dependencies, and interface type-checking.

7 Discussion, Future Work, and Conclusion

Sensor networks present a novel set of systems challenges, due to their need to react
to the physical environment, to let nodes asynchronously communicate within aus-
tere resource constraints, and to operate under a very tight energy budget. Moreover,
the hardware architectures in this new area are changing rapidly. When we began
designing an operating system for sensor nets we believed that the layers and bound-
aries that have solidified over the years from mainframes to laptops were unlikely to
be ideal. Thus, we focused on building a framework for experimenting with a variety
of system designs so that the proper boundaries could emerge with time. The key
elements being a rich component approach with bidirectional interfaces and encap-
sulated tasks, pervasive use of event-based concurrency, and whole-system analysis
and optimization. It has been surprising just how varied those innovations are.



TinyOS: An Operating System for Sensor Networks 27

Reflecting on the experience to date, the TinyOS’ component approach has
worked well. Components see a great deal of re-use and are generally defined with
narrow yet powerful interfaces. NesC’s optimizations allow developers to use many
fine-grained components with little penalty. This has facilitated experimentation,
even with core subsystems, such as the networking stack. Some developers expe-
rience initial frustration with the overhead of building components with a closed
namespace, rather than just calling library routines, but this is compensated by the
ease of interpositioning, which allows them to introduce simple extensions with min-
imal overhead.

The resource-constrained event-driven concurrency model has been remarkably
expressive and remains almost unchanged from the first version of the OS. We chose
the task/event distinction because of its simplicity and modest storage demands, fully
expecting that something more sophisticated might be needed in the future. Instead,
it has been able to express the degree of concurrency required for a wide range of ap-
plications. However, the mechanics of the approach have evolved considerably. Ear-
lier versions of TinyOS made no distinction between asynchronous and synchronous
code and provided inadequate support for eliminating race conditions, many of which
were exceedingly difficult to find experimentally. At one point, we tried introducing
a hard boundary to AC, so all “user” processing would be in tasks. This made it
impossible to meet the real-time requirements of the network stack, and the abil-
ity to perform a carefully designed bit of processing within the handler was sorely
missed. The framework for innovation concept led us to better support for building
(via atomic sections) the low-level concurrent data structures that cleanly integrate
information from the asynchronous external world up into local processing. This
particularly true for low-level real-time operations that cannot be achieved without
sophisticated handlers.

TinyOS differs strongly from most event-driven embedded systems in that con-
currency is structured into modular components, instead of a monolithic dispatch
constructed with global understanding of the application. Not only has this eased the
conceptual burden of managing the concurrency, it has led to important software pro-
tocols between components, such as split-phase data acquisition, data-pumps found
between components in the network stack, and a power-management idiom that al-
lows hardware elements to be powered-down quickly and easily. In a number of
cases, attention to these protocols provided the benefits of integrated-layer process-
ing while preserving clean modularity.

TinyOS is by no means a finished system; it continues to evolve and grow. The
use of language tools for whole-system optimization is very promising and should
be taken further. Currently, components follow implicit software protocols; making
these protocols explicit entities would allow the compiler to verify that components
are being properly used. Examples of these protocols include the buffer-swapping
semantics of the networking stack and the state sequencing in the control protocols.
Parallels exist between our needs and work such as Vault [13] and MC [17].

Richer means of expressing composition are desirable. For instance, while de-
veloping a routing architecture, we found that layers in the stack required signifi-
cant self-consistency and redundancy in their specifications. A simple example is the



28 TinyOS Team

definition of header fields when multiple layers of encapsulation are provided in the
network stack. We have exploredtemplate wiring, which defines a skeleton structure,
behaviors of composition, and naming conventions into which stackable components
can be inserted. A template wiring produces a set of modules and configurations that
meet the specification; it merges component composition and creation into a single
step. We expect to incorporate these higher-level models of composition into NesC
and TinyOS as they become more clear and well defined.

We continue to actively develop and deploy sensor network applications; many of
our design decisions have been based on our and other users’ experiences with these
systems in the field. Sensor networks are still a new domain, filled with unknowns
and uncertainties. TinyOS provides an efficient, flexible platform for developing sen-
sor network algorithms, systems, and full applications. It has enabled innovation and
experimentation on a wide range of scale.

References

1. ANSI/IEEE Std 802.11 1999 Edition.
2. TinySec: Link Layer Security for Tiny Devices.http://www.cs.berkeley.edu/

˜nks/tinysec/ .
3. G. Asada, M. Dong, T. Lin, F. Newberg, G. Pottie, W. Kaiser, and H. Marcy. Wireless

integrated network sensors: Low power systems on a chip. 1998.
4. B. Atwood, B. Warneke, and K. S. Pister. Preliminary circuits for smart dust. InProceed-

ings of the 2000 Southwest Symposium on Mixed-Signal Design, San Diego, California,
February 27-29 2000.

5. L. Barello. Avrx real time kernel.http://www.barello.net/avrx/ .
6. D. Beuche, A. Guerrouat, H. Papajewski, W. Schröder-Preikschat, O. Spinczyk, and

U. Spinczyk. The PURE family of object-oriented operating systems for deeply em-
bedded systems. InProceedings of the 2nd IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, 1999.

7. Bluetooth SIG, Inc.http://www.bluetooth.org .
8. N. Bulusu, V. Bychkovskiy, D. Estrin, and J. Heidemann. Scalable, ad hoc deployable,

rf-based localization. InProceedings of the Grace Hopper Conference on Celebration of
Women in Computing, Vancouver, Canada, October 2002.

9. D. W. Carman, P. S. Kruus, and B. J. Matt. Constraints and approaches for distributed
sensor network security.NAI Labs Technical Report #00-010, September 2000.

10. Center for Information Technology Research in the Interest of Society. Smart build-
ings admit their faults.http://www.citris.berkeley.edu/applications/
disaster_response/smartbuil%dings.html , 2002.

11. A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat monitoring:
Application driver for wireless communications technology. InProceedings of the Work-
shop on Data Communications in Latin America and the Caribbean, Apr. 2001.

12. L. P. Clare, G. Pottie, and J. R. Agre. Self-organizing distributed microsensor networks.
In SPIE 13th Annual International Symposium on Aerospace/Defense Sensing, Simula-
tion, and Controls (AeroSense), Unattended Ground Sensor Technologies and Applica-
tions Conference, Apr. 1999.



TinyOS: An Operating System for Sensor Networks 29

13. R. Deline and M. Fahndrich. Enforcing High-level Protocols in Low-Level Software. In
Proceedings of the ACM SIGPLAN ’01 Conference on Programming Language Design
and Implementation, June 2001.

14. L. Doherty, B. Hohlt, E. Brewer, and K. Pister. SLACKER.http://www-bsac.
eecs.berkeley.edu/projects/ivy/ .

15. egnite Software GmbH. Nut/OS.http://www.ethernut.de/en/software.
html .

16. J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using refer-
ence broadcasts. InFifth Symposium on Operating Systems Design and Implementation
(OSDI 2002), Boston, MA, USA., dec 2002.

17. D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system spe-
cific, programmer-written compiler extensions. InProceedings of the Fourth Symposium
on Operating Systems Design and Implementation., Oct. 2000.

18. D. Estrin et al. Embedded, Everywhere: A Research Agenda for Networked Systems of
Embedded Computers. National Acedemy Press, Washington, DC, USA, 2001.

19. M. Flatt and M. Felleisen. Units: Cool modules for HOT languages. InProceedings of the
ACM SIGPLAN ’98 Conference on Programming Language Design and Implementation,
pages 236–248, 1998.

20. B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers. The flux OSKit: A sub-
strate for kernel and language research. InSymposium on Operating Systems Principles,
pages 38–51, 1997.

21. L. F. Friedrich, J. Stankovic, M. Humphrey, M. Marley, and J. J.W. Haskins. A survey
of configurable component-based operating systems for embedded applications.IEEE
Micro, May 2001.

22. D. Ganesan. TinyDiffusion Application Programmer’s Interface API 0.1.http://
www.isi.edu/scadds/papers/tinydiffusion-v0.1.pdf .

23. D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker. An
empirical study of epidemic algorithms in large scale multihop wireless networks.
citeseer.nj.nec.com/ganesan02empirical.html , 2002. Submitted for
publication, February 2002.

24. D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC language:
A holistic approach to networked embedded systems. InProceedings of Programming
Language Design and Implementation (PLDI), June 2003.

25. I. Gupta and K. Birman. Holistic operations in large-scale sensor network systems: A
probabilistic peer-to-peer approach. InProceedings of International Workshop on Future
Directions in Distributed Computing (FuDiCo), June 2002.

26. T. Ha, B. Blum, J. Stankovic, and T. Abdelzaher. AIDA: Application Independant Data
Aggregation in Wireless Sensor Networks. Submitted toSpecial Issue ofACM TECS,
January 2003.

27. J. S. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Ganesan.
Building efficient wireless sensor networks with low-level naming. InProceedings of the
18th ACM Symposium on Operating Systems Principles, Banff, Canada, October 2001.

28. D. Hildebrand. An Architectural Overview of QNX. http://www.qnx.com/
literature/whitepapers/archoverview.html .

29. J. Hill and D. E. Culler. Mica: a wireless platform for deeply embedded networks.IEEE
Micro, 22(6):12–24, nov/dec 2002.

30. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister. System ar-
chitecture directions for networked sensors. InArchitectural Support for Programming
Languages and Operating Systems, pages 93–104, Boston, MA, USA, Nov. 2000.



30 TinyOS Team

31. J. Hui, Z. Ren, and B. H. Krogh. Sentry-based power management in wireless sensor
networks. InProceedings of Second International Workshop on Information Processing
in Sensor Networks (IPSN ’03), Palo Alto, CA, USA, Apr. 2003.

32. N. C. Hutchinson and L. L. Peterson. The x-kernel: An architecture for implementing
network protocols.IEEE Transactions on Software Engineering, 17(1):64–76, 1991.

33. C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact of network density
on data aggregation in wireless sensor networks. InProceedings of the International
Conference on Distributed Computing Systems (ICDCS), July 2002.

34. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable and ro-
bust communication paradigm for sensor networks. InProceedings of the International
Conference on Mobile Computing and Networking, Aug. 2000.

35. Integrated Chipware, Inc. Integrated Chipware icWORKSHOP.http://www.
chipware.com/ .

36. Jason Hill. Integratedµ-wireless communication platform. http://webs.
cs.berkeley.edu/retreat-1-03/slides/Mote_Chip_Jhill_Nest_
jan2003.pdf .

37. C. Karlof, Y. Li, and J. Polastre. ARRIVE: Algorithm for Robust Routing in Volatile En-
vironments. Technical Report UCB//CSD-03-1233, University of California at Berkeley,
Berkeley, CA, Mar. 2003.

38. B. Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for wireless networks.
In International Conference on Mobile Computing and Networking (MobiCom 2000),
pages 243–254, Boston, MA, USA, 2000.

39. O. Kasten and J. Beutel. BTnode rev2.2.http://www.inf.ethz.ch/vs/res/
proj/smart-its/btnode.html .

40. B. Kauler. CREEM Concurrent Realitme Embedded Executive for Microcontrollers.
http://www.goofee.com/creem.htm .

41. E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click modular router.
ACM Transactions on Computer Systems, 18(3):263–297, August 2000.

42. B. Krishanamachari, D. Estrin, and S. Wicker. The impact of data aggregation in wireless
sensor networks. InInternational Workshop of Distributed Event Based Systems (DEBS),
Vienna, Austria, Dec. 2002.

43. P. Levis and D. Culler. Maté: A tiny virtual machine for sensor networks. InInterna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems, San Jose, CA, USA, Oct. 2002.

44. P. Levis, N. Lee, A. Woo, S. Madden, and D. Culler. Tossim: Simulating large wire-
less sensor networks of tinyos motes. Technical Report UCB/CSD-TBD, U.C. Berkeley
Computer Science Division, March 2003.

45. D. Liu and P. Ning. Distribution of key chain commitments for broadcast authentication
in distributed sensor networks. In10th Annual Network and Distributed System Security
Symposium, San Diego, CA, USA, Feb 2003.

46. J. Liu, P. Cheung, L. Guibas, and F. Zhao. A dual-space approach to tracking and sensor
management in wireless sensor networks. InProceedings of First ACM International
Workshop on Wireless Sensor Networks and Applications, September 2002.

47. C. Lu, B. M. Blum, T. F. Abdelzaher, J. A. Stankovic, and T. He. RAP: A real-time
communication architecture for large-scale wireless sensor networks. InProceedings of
IEEE RTAS 2002, San Jose, CA, September 2002.

48. LynuxWorks. LynxOS 4.0 Real-Time Operating System. http://www.
lynuxworks.com/ .

49. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A Tiny AGgregation
Service for Ad-Hoc Sensor Networks. InOSDI, 2002.



TinyOS: An Operating System for Sensor Networks 31

50. S. Madden, W. Hong, J. Hellerstein, and M. Franklin. TinyDB web page.
http://telegraph.cs.berkeley.edu/tinydb.

51. A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless sensor
networks for habitat monitoring. InACM International Workshop on Wireless Sensor
Networks and Applications (WSNA’02), Atlanta, GA, USA, Sept. 2002.

52. Microsoft Corporation. Microsoft Windows CE.http://www.microsoft.com/
windowsce/embedded/ .

53. Microware. Microware Ariel Technical Overview.http://www.microware.com/
ProductsServices/Technologies/ariel_technology_bri%ef.html .

54. Microware. Microware OS-9. http://www.microware.com/
ProductsServices/Technologies/os-91.html .

55. Millenial Net. http://www.millennial.net/ .
56. R. Min, M. Bhardwaj, S.-H. Cho, N. Ickes, E. Shih, A. Sinha, A. Wang, and A. Chan-

drakasan. Energy-centric enabling technologies for wireless sensor networks. 9(4), Au-
gust 2002.

57. D. Mosberger and L. Peterson. Making paths explicit in the Scout operating system. In
Proceedings of the USENIX Symposium on Operating Systems Design and Implementa-
tion 1996, October 1996.

58. Nilsen Elektronikk AS. Nilsen Elektronikk Finite State Machine Operating System.
http://www.ethernut.de/en/software.html .

59. R. Nowak and U. Mitra. Boundary estimation in sensor networks: Theory and meth-
ods. InProceedings of 2nd International Workshop on Information Processing in Sensor
Networks, Palo Alto, CA, April 2003.

60. Palm, Inc. PalmOS Software 3.5 Overview.http://www.palm.com/devzone/
docs/palmos35.html .

61. A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar. Spins: Security protocols for
sensor networks.Wireless Networks, 8(5):521–534, sep 2002. Previous version of this
paper appeared as PSWCT2001.

62. S. Ping. Something about time syncronization. XXX Lets get this written up as an Intel
tech report.

63. J. Polastre. Design and implementation of wireless sensor networks for habitat monitor-
ing. Master’s thesis, University of California at Berkeley, 2003.

64. N. B. Priyantha, A. Miu, H. Balakrishnan, and S. Teller. The Cricket Compass for context-
aware mobile applications. InProceedings of the 7th ACM MOBICOM, Rome, Italy, July
2001.

65. QNX Software Systems Ltd. QNX Neutrino Realtime OS .http://www.qnx.com/
products/os/neutrino.html .

66. Red Hat, Inc. eCos v2.0 Embedded Operating System.http://sources.redhat.
com/ecos .

67. A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide. Knit: Component composition
for systems software. InProc. of the 4th Operating Systems Design and Implementation
(OSDI), pages 347–360, 2000.

68. C. Sharp. Something about the mag tracking demo. XXX Lets get this written up as an
Intel tech report.

69. C. Sharp et al. NEST Challenge Architecture.http://www.ai.mit.edu/
people/sombrero/nestwiki/index/ .

70. J. A. Stankovic, H. Wang, M. Humphrey, R. Zhu, R. Poornalingam, and C. Lu. VEST:
Virginia Embedded Systems Toolkit. InIEEE/IEE Real-Time Embedded Systems Work-
shop, London, December 2001.



32 TinyOS Team

71. Symbian. Symbian OS - the mobile operating system.http://www.symbian.com/ .
72. uClinux Development Team. uClinux, The Linux/Microcontroller Project.http://

www.uclinux.org/ .
73. University of California at Berkeley. 800-node self-organized wireless sensor network.

http://today.cs.berkeley.edu/800demo/ , Aug. 2001.
74. T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages: a

mechanism for integrating communication and computation. InProceedings of the 19th
Annual International Symposium on Computer Architecture, pages 256–266, May 1992.

75. B. Warneke, M. Last, B. Leibowitz, and K. S. J. Pister. Smart dust: Communicating with
a cubic-millimeter computer.IEEE Computer, 32(1):43–51, January 2001.

76. K. Whitehouse. The design of calamari: an ad-hoc localization system for sensor net-
works. Master’s thesis, University of California at Berkeley, 2002.

77. K. Whitehouse and D. Culler. Calibration as parameter estimation in sensor networks. In
ACM International Workshop on Wireless Sensor Networks and Applications (WSNA’02),
Atlanta, GA, USA, Sept. 2002.

78. Wind River Systems, Inc. OSEKWorks 4.0.http://www.windriver.com/
products/osekworks/osekworks.pdf .

79. Wind River Systems, Inc. pSOSystem Datasheet.http://www.windriver.com/
products/html/psosystem_ds.html .

80. A. Woo and D. Culler. Evaluation of Efficient Link Reliability Estimators for Low-Power
Wireless Networks. Technical report, UC Berkeley, 2002.

81. A. D. Wood and J. A. Stankovic. Denial of service in sensor networks.IEEE Computer,
35(10):54–62, Oct. 2002.

82. M. D. Yarvis, W. S. Conner, L. Krishnamurthy, A. Mainwaring, J. Chhabra, and B. Elliott.
Real-World Experiences with an Interactive Ad Hoc Sensor Network. InInternational
Conference on Parallel Processing Workshops, 2002.

83. W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol for wireless sensor
networks. InProceedings of IEEE Infocom 2002, New York, NY, USA., June 2002.

84. W. Ye, J. Heidemann, and D. Estrin. A flexible and reliable radio communication stack
on motes. Technical Report ISI-TR-565, USC/ISI, Aug. 2002.

85. K. M. Zuberi, P. Pillai, and K. G. Shin. EMERALDS: a small-memory real-time micro-
kernel. InSymposium on Operating Systems Principles, pages 277–299, 1999.


