
Trajectory Data Reduction in Wireless Sensor

Networks

OLIVIU GHICA and GOCE TRAJCEVSKI

Northwestern University

OURI WOLFSON and UGO BUY

University of Illinois at Chicago

PETER SCHEUERMANN and FAN ZHOU

Northwestern University

DENNIS VACCARO

Northrop Grumman Corp.

This work addresses the problem of balancing the trade-off between the energy cost due to com-
munication and the accuracy of the tracking-based trajectories’ detection and representation in
Wireless Sensor Networks (WSNs) settings. We consider some of the approaches used by the
Moving Objects Databases (MOD) and Computational Geometry (CG) communities, and we
demonstrate that with appropriate adaptation, they can yield significant benefits in terms of en-
ergy savings and, consequently, lifetime of a given WSN. Towards that, we developed distributed
variations of three approaches for spatio-temporal data reduction – two heuristics (Dead-Reckoning
and the Douglas-Peuker algorithm), and a variant of a CG-based optimal algorithm for polyline
reduction. In addition, we examine different policies for managing the buffer used by the individ-
ual tracking nodes for storing the partial trajectory data. Lastly, we investigated the potential
benefits of combining the different data-reduction approaches into ”hybrid” ones during tracking
of a particular object’s trajectory. Our experiments demonstrate that the proposed methodologies
can significantly reduce the network-wide energy expenses due to communication and increase the
network lifetime.

Research supported by the NSF-CNS 0910952.
Authors addresses: Oliviu Ghica, Goce Trajcevski, Peter Scheuermann and Fan Zhou, Dept. of
EECS, Northwestern University, Evanston, Il 60208;
email {ocg474, goce, peters, fanz }@eecs.northwestern.edu; Ouri Wolfson and Ugo Buy, Dept.
of CS, University of Illinois at Chicago, 851 S. Morgan St., Chicago, Il 60607; email: {wolfson,
buy }@cs.uic.edu; Dennis Vaccaro, Defense Systems Division, Northrop Grumman Corp., Rolling
Meadows, Il 60008; email:dennis.vaccaro@ngc.com

General Terms: Algorithms, Design

Key Words: Data Reduction, Tracking, Sensor Networks

1. INTRODUCTION

In recent years, wireless sensor networks (WSN) have permeated a plethora of
application domains, due to the ability of the constituent nodes to self-organize in
a wireless network in addition to simply sensing and performing local calculations.
This, in turn, enables their deployment in various environments, where they can
observe and gather data of interest for scientific, traffic management, environmental
safety/hazardz, infrastructure, health-care and military applications [Hartung et al.
2006; Kim et al. 2007; Szewczyk et al. 2004; Werner-Allen et al. 2006].
One of the most stringent constraints of WSNs is the energy, especially its con-

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

2 · Oliviu Ghica et al.

sumption due to communication, which can be orders of magnitude higher than
the energy spent on sensing and performing local calculations [Madden et al. 2005].
Towards that end, research works have addressed various facets of the problem
of energy-efficient operation of WSNs: topology/connectivity maintenance [Bhat-
tacharya et al. 2005; Poduri et al. 2009; Santi 2005; Song et al. 2004], rout-
ing [Akkaya and Younis 2005; Pattem et al. 2008; Wu and Candan 2007; Singh
et al. 1998], and in-network aggregation techniques [Krishnamachari et al. 2002;
Madden et al. 2002; Manjhi et al. 2005; Shrivastava et al. 2004].

Among the canonical problems in WSN settings is the one of tracking of mobile
objects in an area of interest. A large body of existing work has tackled problems
such as improving the accuracy of the tracking process, balancing the trade-offs
among the tracking accuracy, the energy consumptions, and adjusting the routing
structures that convey the location-in-time information to a given sink [Alaybeyogly
et al. 2010; Cao et al. 2005; Chen et al. 2003; Jeong et al. 2007; Pattem et al. 2003;
Wang et al. 2005; Tanin et al. 2008; Zhang and Cao 2004; Zhong et al. 2009]

Our work also targets balancing the trade-off between the accuracy and energy-
savings in tracking scenarios; however, we focus on a slightly different aspect of the
problem. To better illustrate the motivation and settings, consider the following
requests:

R1: ”Notify me when the tracked enemy objects have been continuously moving
towards the armored units for at least 15 minutes”

R2: ”What is the difference in the current motion of the gazelle herd around the
water reservoir with respect to the last-recorded one?”

R3: ”To which of the trajectories observed last week, is the currently tracked one
most similar?”

One commonality in all of the above requests is that—in addition to the need
for coordinating the localization [Jeong et al. 2008; Mao and (ed.s) 2009; Zhang
et al. 2009] at given time instances for the purpose of tracking—in order to process
them, the dedicated sink node actually needs the whole trajectory of the motion,
represented as a sequence of (location,time) data. The problem of trajectory data
reduction has been studied in the MOD (Moving Objects Databases) context from
the perspective of saving the storage space required and reducing the communi-
cation overheads [Cao et al. 2006; ?; Wolfson et al. 1999]. However, in WSN the
network-wide energy consumption is affected by the transmissions executed by the
many relay-nodes, in addition to the ones that participate in tracking the moving
objects.

The motivation and objectives of this work are illustrated in Figure 0??. It shows
a scenario in which three sensors (S1, S2 and S3) have detected the location of a
tracked animal at some time, say, t1, at which point S1 forwards the location-data
towards the sink. At the next instant t2, when S1, S4 and S5 detect the current
location of that animal, S5 transmits the location-data to the sink, possibly using
a different route. Subsequently, the process is repeated with S7 initiating another
routing of the location-data towards the sink. We observe that, if the sink is willing
to tolerate some imprecision about the tracked object’s location, then significant
energy savings in the network can be achieved. Namely, along with the animal’s
location, S1 can forward its velocity to the sink. Provided that the subsequently-

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

Oliviu Ghica et al. · 3

Sink

S1

S2

S3

S4

S5

S6

S7

Expected Motion

Figure. 1. Reducing multihop transmissions in trajectory tracking

detected locations stay within the error-tolerance from their expected values (which
is what the sink believes to be the case), then the transmissions by S5 and S7 could
have been avoided.
The main contributions of this work can be summarized as follows:

—We propose and implement in-network tracking based versions, of

(1) Two heuristics for data reduction:
– DDR: Distributed variant of the Dead-Reckoning policy (cf. [Wolfson et al.
1999]);
– DDP: Distributed variant of the popular Douglas-Peuker heuristic for poly-
line simplification used in cartography and CG (Computational Geometry) [Dou-
glas and Peuker 1973].

(2) A Distributed variant (DOpt) of the optimal algorithm for polyline reduc-
tion [Chan and Chin 1996].

—We also propose and analyze the impact of different buffer management policies
to be used by the collaborative tracking nodes for the purpose of local data
reduction.

—We present extensive experimental evaluations of the benefits of the proposed
methodologies using both real and synthetic motion traces datasets. We also
conducted an experimental analysis of different possible “hybrid” approaches,
obtained by combining the proposed methodologies. Although some results may
seem counter-intuitive, they can be readily explained by carefully considering the
semantics of the properties of each of the approaches.

The rest of this article is structured as follows. In Section 2 we recollect the
necessary background, followed by the detailed presentation of each of the proposed
approaches in Section 3. Experimental evaluations are presented in Section 4. In
Section 5 we position our work with respect to the related literature, and in Section
6 we summarize and outline directions for future work.

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

4 · Oliviu Ghica et al.

2. PRELIMINARIES

We now discuss the basic assumptions regarding the WSN settings, and present the
intuition behind the dead-reckoning policy, Douglas-Peuker heuristic for polyline
data reduction, and the optimal polyline reduction algorithm. Since the last two
approaches were motivated by the needs from cartography and CG, we discuss the
need for adding temporal awareness in each of them, so that they can be applied to
spatio-temporal trajectories.
We assume a sensor network consisting of N nodes, SN = {S1, S2, . . . , SN},

where each node is capable of detecting an object within its range of sensing, e.g.,
based on vibration, acoustics or otherwise [He et al. 2006]. Each node is aware
of its locations Sk = (xSk, ySk) via a GPS or other techniques e.g., beacons [Mao
and (ed.s) 2009; Yang et al. 2006]. Nodes are also assumed to be static and know
the locations of their one-hop neighbors. We further assume that the network
is dense enough to ensure coverage for the purpose of detection and localization
via trilateration using some standard ranging method, e.g., acoustic/echo-based,
RSS(Received Signal Strength) or TDOA (Time Difference of Arrival) and to ensure
the selection of a neighbor as a tracking leader to whom the task of tracking can
be handed-off [Jeong et al. 2007; Lazos et al. 2009; Lee et al. 2007; Pattem et al.
2003; Wang et al. 2005].

2.1 Dead-Reckoning Policy

The dead-reckoning (DR) policy, introduced in [Wolfson et al. 1999] for managing
a trajectory data in MOD settings, can be viewed as a contract between the MOD
server and the GPS-equipped localization devices on-board moving vehicles, as
clients.

t1

t3

X

Y

Time

d(t3) > Error_Threshold

New Update

Expected Velocity

Expected LocationsActual Location

Figure. 2. Dead-reckoning location updates

Essentially, the server specifies an acceptable error-threshold for the moving ob-

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

Oliviu Ghica et al. · 5

jects whereabouts. In response, the mobile unit transmits its: (1) current location;
(2) current time; and (3) the current estimate of the expected velocity to the MOD
server. For as long as the actual locations detected at any subsequent time instant
are no further than the error-threshold, say, ε, the location update is not transmit-
ted to the server. Whenever the actual location deviates by > ε from the expected
one, the mobile unit will send an update with the new values for the (location,
time, expected velocity). An illustration of the dead-reckoning policy is provided in
Figure 2, and we note that, as demonstrated in [Trajcevski et al. 2006], when DR
policy is used, the simplified trajectory thus generated actually corresponds to a
simplification of the entire trajectory (had every location been transmitted to the
MOD server) with an error-bound of 2 · ε.

2.2 Douglas-Peuker Polyline Simplification Algorithm

The problem of polyline simplification (equivalently, reduction), can be specified as
follows:
Given a polyline (a sequence of vertices and the line segments in-between consecu-
tive vertices) P = {V1, V2, . . . , Vn}, generate a polyline P ′ ⊆ P such that for every
point of p ∈ P (vertex Vi and/or a point along a line segment ViVi+1) there exists
a point on p′ ∈ P ′ for which the Euclidian distance pp′ is no greater than ε.

V1

V2

V3

V4

V5

V6

V7 V8

First Simplification Attempt - Fail
(d_max > Tollerance Threshold)

>

d_
m

ax

Figure. 3. Douglas-Peuker Polyline Reduction

One of the most popular methods for polyline simplification is the Douglas-Peuker
(DP) heuristic algorithm [Douglas and Peuker 1973], and the pseudo-code of the
algorithm that implements it can be specified as follows:
1. If every point in P is closer than ε to the V1Vn line segment, return V1Vn.
2. Else
3. Find the vertex Vi with largest distance from V1Vn

// In case of a tie, pick the vertex with smallest index i.
4. Recursively apply DP on {V1, . . . , Vi} and {Vi, . . . , Vn} and merge the results.
Figure 3 illustrates the DP algorithm on a polyline with 8 vertices. The initial

attempt to simplify it with a single line segment V1V8 fails, as the the distance of
the vertex V3 to V1V8 exceeds the acceptable error. Subsequently, the procedure
is applied to the segments V1V3 and V3, V8 and the simplified polyline {V1, V3, V8}
is returned. As can be seen, due to the recursive invocation in line 4, the time-
complexity of the above algorithm is O(n2), for a polyline with n vertices. Subse-

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

6 · Oliviu Ghica et al.

quently, a version of the DP algorithm with complexity O(n log n) was presented
in [Hershberger and Snoeyink 1992].

2.3 Optimal Polyline Simplification

We re-iterate that the DP algorithm is a heuristic in the sense that it does not
guarantee to return a polyline with a minimal number of points for a given tolerance
threshold ε. Looking at the respective pseudo-code, this is reflected in the fact
that the index–i of the anchor-point for the recursive invocations is chosen non-
deterministically. Works from the CG community have addressed the problem of
optimal polyline reduction [Chan and Chin 1996; Imai and Iri 1988], and pointed
out that there are two distinct facets to the problem:
(1) Given a tolerance threshold ε, determine the subset of the vertices of the original
polyline with minimum cardinality.
(2) Given a ”subset-budget” k ≤ n, i.e., the maximal acceptable cardinality of the
reduced polyline, generate a reduction with a smallest error µ.

V1
V2

V3

V4

LT2

UT2

LT3

UT3

Figure. 4. Chan and Chin Optimal Polyline Reduction

The intuition behind the optimal algorithm for polyline reduction (cf. [Chan and
Chin 1996]) is illustrated in Figure 4. Given the tolerance threshold ε, a collection
of circles is generated, each centered at Vi (i ∈ {1, 2, . . . , n}) and with radius ε.
Subsequently, each vertex (e.g., V1 in Figure 4) generates a sequence of pairs of
rays corresponding to the tangents to the circles around the prior (when i ≥ 2)
and subsequent vertices. In Figure 4, the first such pair is (UT2,LT2), defining the
boundaries of the slab between the Upper Tangent and Lower Tangent to the circle
centered at V2. The subsequent pair is (UT3,LT3) corresponding to the disk centered
at node V3. The key observation is that any ray emanating from V1 that is inside
the slab bounded by (UTi,LTi), is guaranteed not to be further than ε from Vi. At
each subsequent vertex, the boundaries of intersection of the slabs are maintained—
for instance, after processing V3, the boundaries of the intersection are (UT2,LT3).
The process terminates when the intersection between the incrementally-maintained
slab and the subsequent slab, defined by the tangents to the circle centered in the
next vertex in the sequence, becomes empty. Although not explicitly shown in
Figure 4, it can be inferred that the intersection of the slab bounded by tangents
from V1 to the circle centered at V4, and the slab bounded by (UT2,LT3) will be

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

Oliviu Ghica et al. · 7

empty. Hence, the segment V1, V4 cannot be a simplified representation of the
partial polyline {V1, V2, V3, V4}, with an error tolerance ε. The best that can be
achieved is the simplified trajectory vertex V1, V3, replacing V1, V2 and V2, V3, after
which the procedure continues from V3. A detailed specification of the algorithm is
available at [Chan and Chin 1996] and we note that, since the above procedure has
to be repeated for each vertex as a starting-anchor point, and both in increasing and
decreasing directions of vertices’ indices, the complexity of the optimal algorithm
is O(n2).

2.4 Temporal Awareness

The DR policy was cast in MOD settings in [Wolfson et al. 1999] and, by transmit-
ting the expected velocity at each update, it implicitly provided a “link” between
the detected vs. the expected locations and the time, this is not the case for the
DP heuristic [Douglas and Peuker 1973], nor for the optimal algorithm [Chan and
Chin 1996] – both of which are geometric in nature. As demonstrated in [Cao
et al. 2006], the temporal aspect of the trajectory polyline needs to be properly
incorporated when calculating the distance between points and/or segments for the
purpose of simplification.

T

X

Y
V1

V2

V3

T = t2

Figure. 5. Optimal Trajectories’ Polyline Reduction

To explain the intuition1, observe the spatio-temporal version of the optimal
algorithm from [Chan and Chin 1996]. The distance-comparisons between the
points from the original and simplified polyline need to be performed at same time-
instances. Hence, instead of the circles around each vertex in 2D settings becoming
spheres in 3D and the tangents-based slabs becoming sheared cones on the tan-
gential circles of such spheres, we actually still have circles in horizontal planes for
fixed values of T = ti (recall, a trajectory vertex has coordinates: Vi = (xi, yi, ti)).
For example, the bounding sheared cone emanating from V1 is obtained as a union
of all the tangents from V1 to the circle centered at V2 with radius ε and located at
the horizontal plane at time T = t2. One consequence of this is that the complexity
of maintaining the bounding volumes is extended – as shown for the vertex V3 in

1Detailed discussion is available in [Cao et al. 2006; Trajcevski et al. 2006].

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

8 · Oliviu Ghica et al.

Figure 5. Namely, instead of pair of rays, which can be updated in constant time,
now the intersection of a collection of circles at each horizontal plane correspond-
ing to a particular time instant needs to be maintained. Optimal versions of the
2D algorithm from [Chan and Chin 1996] extended to three (and higher) spatial
dimensions has been presented in [Bose et al. 2002], and spatio-temporal variants
have been presented in [Cao et al. 2006].

3. TRACKING AND IN-NETWORK TRAJECTORY DATA REDUCTION

We now proceed with presenting the distributed versions of the Dead-Reckoning
(DDR) policy, followed by the distributed variants of simplification-based approaches:
the Douglas-Peuker (DDP) heuristic, and the optimal algorithm (DOpt) – in spatio-
temporal context and in WSN settings. Subsequently, we discuss the issue of man-
aging the local buffers of the individual nodes which are used to store partial results
from tracking the mobile objects’ trajectories, and ”hybrid” approaches that com-
bine DDR with DDP or DOpt.
Formally, a trajectory tracking queryTTQ is specified as a tuple (Sink, tbegin, tend,

Th, Type, Buffer Size, Buffer Mgmt), where the meaning of the parameters is as
follows:

(1) Sink contains the identification and the location of the sink-node (xS , yS) – the
final destination of the packets containing the tracking data.

(2) tbegin and tend denote the boundaries of the time-interval of interest for the
tracking query.

(3) Th denotes the tolerance-threshold, i.e. ε, used by the particular type of sim-
plification.

(4) Type indicates whether one of the three basic types of data reduction is to be
used (DDR, DDP, DOpt). In case a Hybrid approach is desired, it is specified
as a pair (DDR,DDP) or (DDR,DOpt).

(5) Buffer Size is a parameter that denotes the capacity of the buffer that is used
to collect the sequence of (location, time) values, as they are detected.

(6) Buffer Mgmt denotes the policy used when local simplification is applied by the
individual nodes.

The sink node injects the TTQ by propagating it to its immediate one-hop
neighbors and the request is subsequently spread via gossiping [Boyd et al. 2006].
We assume that the time tinj at which the query is injected in the network is not
later than tbegin(≤ tend) parameter. Once a given node receives a TTQ request, it
starts monitoring for objects that it needs to track and executes the corresponding
algorithm based on the value of the Type parameter, throughout the desired time-
interval of interest.

3.1 Distributed Dead-Reckoning

When a node receives a TTQ request with parameters Th = ε and Type = DDR,
it first checks whether it can sense an object in its range and, in collaboration
with its neighbors, it tries to determine that object’s location (i.e. via trilateration
of range measurements obtained from neighbors) at a given time instance, say t1
(∀t1 ∈ [tbegin, tend]). The subsequent behavior of the given node depends on whether

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

Oliviu Ghica et al. · 9

Algorithm 1 DDR (Executed by Tracking Nodes)

Input: TTQ (Sink, tbegin, tend , ε, DDR)

1: while current time ∈ [tbegin, tend]
2: Detect object and determine its location (e.g. via trilateration)
3: if no oID assigned to the object yet then
4: Assign oID ;
5: Broadcast (oID, Detected Location, current time) to 1-hop neighbors;

// part of the tracking leader’s election process
6: else if no Velocity Information then

7: Use received information for Location and Time from the neighbors
in conjunction with the Detected Location and current time
to determine the Velocity;

8: Route (oID, Detected Location, current time, Velocity) towards the sink;
// The sink is made aware of the object

9: else if distance(Detected Location,Expected location) at current time > ε
then

10: Re-calculate the Velocity (via data obtained from the previous-leader);
11: Route the new (oID, Detected Location, current time, Velocity) packet

towards the sink;
12: end if

13: Select the next leader;
14: Transmit to it the (oID, Detected Location, current time, Velocity)

received from the previous leader;

it has received some additional information regarding the object: (1) whether the
object already has an established identifier (oID) or not; (2) whether the sink has
the awareness of oID being tracked on behalf of a given TTQ. The DDR method
is formally presented by Algorithm 1.
The different behavior of the nodes executing Algorithm 1 is illustrated in Figure

6. Initially, none of the sensors S1, S2 and S3 has received any data about the
object that they collaboratively determine to be at location L1 at T1; hence, they
assign the oID = O1 to it. After that information has been broadcast, one of
them, say S3, declares itself as tracking leader, using some standard leader-election
protocol (e.g. [He and Hou 2005]). During the next sampling epoch, S1, S4 and S5

determine that O1 is at location L2 at time T2. Combined with the data about the
location L1 at T1 (transmitted from S3), they use it to determine the Velocity V .
The complete information (O1, L2, T2, V) is transmitted from S5 towards the sink
using, e.g., shortest path Trajectory-Based Forwarding (TBF) [Niculesu and Nath
2003]. In addition, S7 is selected as the next leader [He and Hou 2005; Lee et al.
2007]. Upon detecting the location of the object at time T3 (in collaboration with
S5 and S6), S7 determines that O1 is close enough to the expected location and
does not send any update to the sink.
We note that, depending on the object’s motion and the nodes’ deployment, it

may be the case that the ”next leader” (cf. line 13 of Algorithm 1) may actually
be the same node from the previous sampling-epoch.

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

10 · Oliviu Ghica et al.

Sink

S1

S2

S3

S4

S5
S6

S7

(O1, L1, T1)
(O1, L2, T2, V)

No Update at T3

Figure. 6. Illustrating the DDR approach

3.2 Distributed Simplification Algorithms

In contrast to the DDR approach, where the sink ”agrees” to have an always fresh-
belief about the location of a given (tracked) object within an acceptable error-
tolerance, the focus of the DDP and DOpt approaches is on locally-reducing the
number of segments that are transmitted throughout the network for the purpose
of representing the object’s trajectory at the sink.
The behavior of the tracking nodes that detect the two initial locations under

DDP and DOpt approaches is similar to DDR. Upon receiving a TTQ request with
parameters Th = ε and Type = DDP (or Type = DOpt), a given node will first check
if it can sense an object in its range and determine its location via trilateration. If
none of the neighbors has conveyed any information regarding the sensed object,
the node will assign an oID and, in addition, it will initialize the variable count to 1.
The variable count keeps track of the number of (location, time) entries currently in
the buffer. Otherwise, if the node receives a message stating that a particular oID
has been located and the count variable is already set to 1, it will collaboratively
detect the oID’s next location, update the counter and, using the previous location
select the next leader for the subsequent localization. In addition, the count variable
will be updated. The intuition is formally presented in Algorithm 2.
The fundamental difference between DDP and DOpt approaches is reflected in

line 14 of Algorithm 2. Namely, based on the parameters of the query obtained
when it is propagated in the network, the tracking nodes will select whether they will
apply the heuristic or the optimal algorithm. However, regardless of the selection
of a particular algorithm to be locally executed, two important observations are in
order:

(1) Each algorithm operates on a partial representation of the moving object’s
trajectory—whatever is currently available in the buffer.

(2) While adding the temporal-awareness will not affect the complexity of the DDP

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

Oliviu Ghica et al. · 11

Algorithm 2 Distributed (Collaborative) Simplification

Input: TTQ (Sink, tbegin, tend , ε, DDP, Buffer Size)

1: While current time ∈ [tbegin, tend]
2: Detect object and determine its location (e.g. via trilateration)
3: if no oID available for the object then
4: Assign oID ;
5: count = 1 ;
6: Insert (oID, Detected Location, current time, count) into buffer ;
7: Broadcast (oID, Detected Location, current time, count, buffer);

// part of the leader election process
8: else if count < Buffer Size then

9: Insert the current time and Detected Location into the buffer;
10: count++;
11: Use the last two values inside the buffer to determine

the velocity, next leader and transmit
(oID, Detected Location, current time, count, buffer) to it;

12: else
13: // count == Buffer Size
14: Apply the corresponding Simplification algorithm

to the polyline in the buffer;
15: Route the simplified polyline the the sink;
16: count = 1 ;
17: Clear the buffer;
18: Select the next leader based on the last two updates in the buffer;
19: Transmit (oID, Detected Location, current time, count, buffer)

to the next leader;
20: end if

(O(k2), where k is the size of the buffer), as illustrated in Section 2.4, it will
complicate the maintenance (and update) of the partial results when applying
the DOpt variant due to the need to maintain an intersection of k circular
segments in the worst case. This, in turn, will increase the complexity of the
DOpt to O(k3).

Figure 6 can also serve to illustrate the execution of Algorithm 2 in the context
of DDP being used. Note that, unlike DDR, the DDP protocol would not generate
any transmission from the node S5. Instead, the buffer containing the collection
{(L1, T1), (L2, T2)} for O1 would be sent to S7, along with the value of count = 2.

3.3 Buffer Management Policies

An important observation regarding Algorithm 2 is that regardless of the choice of
the particular simplification method (DDP or DOpt), there are two specific steps
that impact its behavior:

(1) The simplification does not start until the local buffer – containing the previous
tracking-samples plus the one(s) of its own – is completely full (line 13 of
Algorithm 2).

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

12 · Oliviu Ghica et al.

(2) As soon as the simplification is completed, the compressed version of the tra-
jectory polyline is transmitted to the sink (line 15 of Algorithm 2).

This, in a sense, means that the two activities (execution of the simplification
algorithm and transmission to the sink) are triggered by the same event—local
buffer filling to its capacity.
We observe that, once the local buffer has been filled up (i.e., count = Buffer Size),

the invocation of a particular simplification algorithm will reduce the current tra-
jectory representation, thereby freeing some of the capacity of that same buffer.
This, in turn, enables starting of another ”cycle” of a sequence of sampling (loca-
tion,time) points that can be now stored in the residual buffer space, without (and,
instead of) generating a transmission to the sink. Similar observation holds once
the residual free buffer space has been occupied – namely, invoking DDP or DOpt
will again free some space in the same buffer.
Let Tr(n) denote the set of (location,time) points appended to the buffer during

the nth iteration until the free portion of the buffer has been completely occupied.
Let Tr′(n) denote the compressed version of Tr(n), i.e., after DDP or DOpt has
been applied to it. Let Cb denote the total capacity of the buffer, and Cbr(n) denote
its residual capacity after Tr(n) has been substituted/represented by Tr′(n). The
residual capacity of the buffer can be specified with the following recurrent relation:

Cbr(n) = Cbr(n− 1)− |Tr′(n)|

Assume that after completing the n−th iteration of alternating between sampling
and invoking a simplification algorithm, it is no longer possible to free some residual
space in the buffer by simplifying Tr(n) (i.e., Cbr(n) = 0). When this is the case,
the node will initiate a transmission towards the sink, and clear the content of
its buffer – except for the last (location,time) value, which is used for determining
the velocity at the next sampling epoch. Clearly, the size of the data-portion of
the packets that will be relayed towards the sink is

∑n

j=1 |Tr
′(j)|, however, the

important observation here is that the network, as well as the end-user application
at the sink, will have a view that a “virtual buffer” of a much larger capacity (i.e.
Σn

j=1Tr(j)) is being used during the tracking process.
The approach outlined above will trigger a transmission towards the sink when

Cbr(n) = 0 (i.e.,
∑n

j=1 |Tr
′(j)| = Cb). On the one hand, we observe that, it may

be the case in practice that after a particular iteration k (k < n) of sampling and
simplification, the value of the residual buffer space Cbr(k) > 0 need not yield any
improvements in terms of the overall data reduction. Specifically, given the nature
of the object’s motion, it may be the case that Cbr(k) sampled (location,time)
points may not bring any savings after simplification. On the other hand, if the
buffer had extra capacity to accommodate the subsequent s samples, the overall
reduction applied to the trajectory of size |Cbr(k)+ s| for a given tolerance ε could
be substantial.
Let ξ ∈ [0, 1] denote the fraction of the buffer that is already full – i.e. ξ =

1− (
∑j=k

j=1 Cbr(j))/Cb. The above discussion leads to a policy in which a threshold-
value ξθ may be used to initiate a transmission towards the sink whenever Cbr(k) ≤
(1 − ξθ)Cb. Investigating the problem of determining such ξθ value, which will
depend on the history of the object’s motion, is beyond the scope of this work.

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

Oliviu Ghica et al. · 13

However, as part of our experiments, we varied the parameter ξθ as part of the
TTQ syntax and the experimental results will subsequently indicate that indeed
the value of this particular parameter could improve the overall benefits of the
tracking-based trajectory monitoring in a WSN settings.
We are now in the position to explain the role of the Buffer Mgmt parameter of the

TTQ syntax. Namely, the discussion presented so far assumed that each invocation
of the DDP or DOpt algorithms will be applied to a particular sequence of (loca-
tion,time) samples, i.e. Tr(j), generating its reduced version Tr′(j) to be stored in
the local buffer. We call this policy Partial-Scope Reduction. In addition to this,
however, the corresponding simplification algorithm can be applied to the entire
buffer, including both the spatio-temporal data points due to the current iteration
of samplings and the already-compressed data from the previous iterations of sam-
plings and simplifications. For example, assume that the initial Buffer Size samples
represent Tr(1) samples which, after applying the corresponding simplification, are
replaced with Tr′(1). Let Tr(2) denote the trajectory consisting of the vertices that
have filled in the node-buffer during the second iteration of sampling. Under the,
so called, Full-Scope Reduction, the simplification (with the same error-tolerance
ε) is applied to Tr′(1) ∪ Tr(2), to generate Tr′(2). The Full-Scope Reduction as a
Buffer Mgmt policy is a heuristic that attempts to ”link” the previously-compressed
trajectory with the current-samples. As our experiments indicate, this policy is less
sensitive to the variations of ξθ than Partial-Scope Policy and can further decrease
the total size of the transmitted data throughout the network. However, there
is another aspect of the problem that could be of interest in practical scenarios,
which is affected by the chosen Buffer Size, ξθ and Buffer Mgmt combination – the
”freshness” (i.e., the latency) of the data in the sink, which we address next.

3.4 Hybrid Approach

Depending on the Buffer Size and ε, the DDP and DOpt approaches are likely
to generate fewer routings requests with messages towards the sink through the
network, when compared to DDR. This is especially true when a same tolerance-
threshold is used in DDP/DOpt as in DDR (cf. [Trajcevski et al. 2006]). However,
the “price” for this benefit of DDP/DOpt is that until the buffer is filled up with
(location, time) samples, the sink has absolutely no knowledge about the tracked
object’s whereabouts. Once the sink received a simplified polyline, it represents the
(near) past motion of the object, therefore, the sink data may not be “fresh” enough
with respect to the actual data detected by the tracking sensor. Complementary
to this, when using DDR, the sink can guarantee that the object’s actual location
is within a disk of radius ε from its expected at any time instant. Combining the
two benefits (i.e., compressed near-past data while guaranteeing some error bounds
on the current data) may be important in certain applications, as exemplified by
the request R1 in Section 1. To cater for such cases, we also consider the Hybrid
heuristic which, essentially, behaves as follows:
(1) For as long as the requirements of the DDR approach for a given ε are satisfied,
the tracking nodes will execute the DDP or DOpt algorithm for a given ε and
Buffer Size.
(2) Whenever the actual detected location is further than ε from the expected
one, a new DDR cycle is started, applying the DDP or DOpt simplification to the

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

14 · Oliviu Ghica et al.

current (not necessarily completely filled) buffer which, upon sending the simplified
trajectory to the sink, is set to the current values of the location and time, and
resetting the value of count to 1.
One may expect that the Hybrid policy should outperform each of the DDR,

DDP and DOpt when used in isolation, in terms of the number of updates/segments
transmitted to the sink and, consequently, the overall energy savings in the network.
However, our experiments will demonstrate that this is not the case. Although
counter-intuitive at first sight, the rationale for this behavior is that the Hybrid
approach pays the price for the “freshness” of the data (via DDR) at the sink
which, in turn, forces the simplification algorithms to be applied to a partially-full
buffer.

4. EXPERIMENTAL OBSERVATIONS

Our experiments were performed using the open-source, SIDnet-SWANS simulator
for WSN [Ghica et al. 2008]. The testbed consists of 750 homogeneous nodes with
simulated ranging capabilities that implement the equivalent of an active ultrasonic
echo ranging system, running on a standard MAC802.15.4 link layer protocol.
While mobility models such as random walk or random way-point are often used,

one of their drawbacks is the lack of spatio-temporal dependency [Bai et al. 2003].
To address this, we used the Gauss-Markov Mobility Model (GMMM) [Liang and
Haas 2003; Camp et al. 2002] which does exhibit spatial and temporal dependency.
As illustrated in Figure 7 (based on [Ope ; Camp et al. 2002]), GMMM models
yield traces that are more similar, especially in terms of sinuosity [Mueller 1968;
Dodge et al. 2009] to real traces. Essentially, GMMM works on a time-slot basis
where at each slot the speed and direction are computed based on the ones from the
previous time-slot. Figure 7(d) illustrates a snapshot of SIDnet-SWANS Simulator
performing tracking on a GMMM-based mobile object. In addition, we have per-
formed a separate analysis using real-world prerecorded traces gathered from [Ope
]. What distinguishes the real-traces is that they exhibit a stop-and-go behavior,
which is not captured by the GMMM models. As it turns out, these differences af-
fect the performance of our distributed algorithms, and both synthetic models and
real traces have been configured to be representative of three common categories of
mobile entities: humans (walk), bicyclists and automotive drivers.
The configuration space covered by our experiments is summarized in Table I,

providing a total of 2,880 distinct configurations. The main parameters that we
vary are the Tracking Tolerance ε (we note that we used the same value in the DDP
and DOpt approaches), the capacity Cb of the trajectories’ vertices buffer required
by the DDP and DOpt components to store consecutive trajectory end-points (c.f.
Section 3), the Buffer Size that provides the triggering condition for the trajectory
reduction algorithm, the Buffer Mgmt defining the scope of applying the trajectory
reduction algorithms to the buffer data and, ultimately, the specific algorithmic
configuration: with simplification (DDP, DOpt) or without (DDR,RAW), and the
Hybrid configurations (DDP+DDR) and (DOpt+DDR). We denote as ”RAW” the
naive approach, which does not apply any data reduction methodology and trans-
mits the individual tracking samples of the form (location,time) to the sink node
at every sampling interval.

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

Oliviu Ghica et al. · 15

(a) Random-Walk Model (b) Gauss-Markov Model

(c) Real Car’s Trace (d) SIDnet-SWANS snapshot

Figure. 7. Synthetic and Real-life Traces

Table I. Experimental space
Simulation Sensing Tracking DDP/DOpt Buffer-Flush Buffer Avg. Velocity Algorithmic

Area Range Tolerance Buffer Size Threshold Reduction Object Type Configuration
[m] [m] ε[m] Cb ξθ Scope [mph]

1,500 30 1 5 0 Partial 4 (Walk) RAW
10 10 .2 Full 10 (Bike) DDR
50 20 .4 25 (Car) DDP
100 40 .6 DOpt

.8 DDP+DDR
DOpt+DDR

We used a constant sampling-rate of 5 seconds in each of the runs of the simula-
tor2. Each configuration instance from Table I has been tested against 10 distinct
GMMM traces and 4 real-traces representative for each category of mobile objects,
resulting in a total of 40,320 experiments. Each experiment spans 2 hours of sim-
ulation time and consists of two parts: (1) bootstrapping and neighbor discovery
protocols in SIDnet-SWANS; and (2) the actual tracking. Although the body of
experiments is extremely large, the actual reason for capping the simulation time
stems from the limited duration of real-traces. Lastly, SIDnet-SWANS’s nodes have
been configured to meet Mica 2 Mote energy consumption specifications, briefly
outlined in Table II.
Each experimental scenario consists of a single moving object traversing the net-

2We recognize the large body of works that have addressed the various optimizations of the
sleeping schedules (e.g., [Cao et al. 2005]) when trading off accuracy for energy savings, however,
this is not the objective of the current work.

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

16 · Oliviu Ghica et al.

Table II. Energy characteristics ofMica2 Mote (MPR500CA)

State Based on Energy
requirement

Sensing Active Is = 10mA 0.03mJ/ms
Sensing Passive Is = 0mA 0mJ/ms
CPU Active Ip = 8mA 0.024mJ/ms
CPU Idling Ii = 0.015mA 4.5 ∗ 10−5mJ/ms
RADIO Transmitting It = 27mA 0.081mJ/ms
RADIO Receiving Ir = 10mA 0.03mJ/ms
RADIO Listening Il = 3mA 0.009mJ/ms
RADIO Off-Mode Islp = 0.5mA 0.0015mJ/ms

work field, tracked via a leader-based tracking protocol (cf. [He and Hou 2005]).
Tracking information is propagated to subsequent tracking nodes which are dynam-
ically chosen in close-proximity to the moving target as it progresses through the
sensorial field.

The first results that we report concern the network-wide energy savings and
consumption patterns. Figures 8 shows the run-time cumulative energy expenditure
of all the nodes involved in tracking and transmitting of the location updates and/or
segments of the reduced trajectory to the sink, and the energy-sensitivity to the
tracking tolerances ǫ. Figures 8(a) and 8(b) show the case when the acceptable
trajectory representation error is low (ε = 1m), whereas Figures 8(c), 8(e) and
8(d), 8(f) show the cases for ε = 10m and ε = 100m based on synthetic models and
real-traces respectively. As it can be seen, the DDP and DOpt configurations are
consistently achieving the lowest overall energy consumption, up to 10 times less
than the RAW approach as shown using real-traces, while the energy consumption
of the DDR and Hybrid approaches (denoted as DDP+DDR and DOpt+DDR)
is reducing as the tolerance-threshold increases. The stop-and-go characteristic of
real-traces is implicitly exploited by all but the RAW approach, leading to even
higher energy savings for the DDR, DDP and DOpt approaches. As a note, the
difference in performance between DDP and DOpt based components are minor,
hence they sometimes overlap in the graphs, i.e. when the tolerance error gets
smaller.
The network lifetime [Dietrich and Dressler 2009] is a metric of utmost impor-

tance when evaluating the effectiveness of any approach in WSN settings. In addi-
tion to the sheer energy consumption, an important aspect for the overall lifetime
is the distribution of the energy consumption throughout the network. We quantify
the distribution of the energy consumption via the standard deviation of the resid-
ual energy levels of sensor nodes in the entire network, as we illustrate it in Figure 9.
As shown, the DDP/DOpt approaches achieve nearly half of the energy imbalance
manifested by the RAW approach, based on synthetic models, and a third when
stop-and-go conditions are considered in the real data traces. An important obser-
vation is that stop-and-go conditions create tracking hot-spots, perusing a small set
of nodes that are continuously monitoring a stationary object for prolonged periods
of time, as captured in Figure 9.

One may observe that the hybrid approaches are consistently consuming more
energy than the DDR, DDP and DOpt in isolation; one may wonder why we are

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

Oliviu Ghica et al. · 17

 0

 2

 4

 6

 8

 10

 12

 14

 1 1.2 1.4 1.6 1.8 2

C
um

m
ul

at
iv

e
E

ne
rg

y
E

xp
en

di
tu

re
 [J

]

Time [h]

RAW
DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(a) ǫ = 1m, synthetic model

 0

 2

 4

 6

 8

 10

 12

 14

 1 1.2 1.4 1.6 1.8 2

C
um

m
ul

at
iv

e
E

ne
rg

y
E

xp
en

di
tu

re
 [J

]

Time [h]

RAW
DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(b) ǫ = 1m, real traces

 0

 2

 4

 6

 8

 10

 12

 14

 1 1.2 1.4 1.6 1.8 2

C
um

m
ul

at
iv

e
E

ne
rg

y
E

xp
en

di
tu

re
 [J

]

Time [h]

RAW
DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(c) ǫ = 10m, synthetic model

 0

 2

 4

 6

 8

 10

 12

 14

 1 1.2 1.4 1.6 1.8 2

C
um

m
ul

at
iv

e
E

ne
rg

y
E

xp
en

di
tu

re
 [J

]

Time [h]

RAW
DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(d) ǫ = 10m, real traces

 0

 2

 4

 6

 8

 10

 12

 14

 1 1.2 1.4 1.6 1.8 2

C
um

m
ul

at
iv

e
E

ne
rg

y
E

xp
en

di
tu

re
 [J

]

Time [h]

RAW
DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(e) ǫ = 100m, synthetic model

 0

 2

 4

 6

 8

 10

 12

 14

 1 1.2 1.4 1.6 1.8 2

C
um

m
ul

at
iv

e
E

ne
rg

y
E

xp
en

di
tu

re
 [J

]

Time [h]

RAW
DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(f) ǫ = 100m, real traces

Figure. 8. Impact of tolerance-threshold on energy consumption based

considering it at all. The reason is two-fold:

(1) When DDR is used with a threshold ε, as demonstrated in [Trajcevski et al.
2006], the error that the sink has for the representation of the history of the object’s
motion is twice as large as receiving every single sample and then applying data
reduction in-situ. Namely, the DDR obtained trajectory may be up to 2 · ε from
the actual object’s trajectory obtained through all the individual samples. Adding
DDP or DOpt in the Hybrid approach ensures the error bound of ε.

(2) When DDP and DOpt are used in isolation, the energy-savings are higher; how-
ever, as we will show next, the ”freshness” of the sink’s knowledge about the tracked
object’s whereabouts is lower (has much higher latency), a normal consequence of
buffering larger amounts of data between subsequent updates. Adding DDR into

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

18 · Oliviu Ghica et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

DDP DDR+DDP DDR+DOpt DDR DOpt RAW

S
tD

ev
 o

f R
es

id
ua

l E
ne

rg
y

Le
ve

ls

Experimental Configuration

Real-Traces
Synthetic Models

Figure. 9. Load balancing disruption analysis based on the standard deviation of the residual
energy levels

 0

 100

 200

 300

 400

 500

 600

 700

 1 1.2 1.4 1.6 1.8 2

N
um

be
r

of
 S

eg
m

en
ts

Time [h]

RAW
DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(a) Synthetic mobility models

 0

 100

 200

 300

 400

 500

 600

 700

 1 1.2 1.4 1.6 1.8 2

N
um

be
r

of
 S

eg
m

en
ts

Time [h]

RAW
DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(b) Real-traces

Figure. 10. Average number of trajectory segments transmitted

the Hybrid approaches helps reducing the latency of the sink’s knowledge, especially
when the object exhibits high mobility, hence achieving a certain balance between
energy consumption and information acquisition latency.
Figure 10(b) shows a complementary measure which, in a sense, provides an

intuitive justification of the results presented in Figure 8. Namely, it illustrates the
number of transmitted trajectory segments towards the sink, averaged over all the
scenarios outlined in Table I. As can be observed, the RAW approach transmits
almost twice as many segments as DDR and almost three times as many as DDP
and DOpt.
We note that although the collection of curves in Figure 10(b) (a)—(b) is similar

in appearance to the collections in Figure 8 (a)—(f), they cannot be quite mapped to
any of them via simple scaling. The reason is that the curves in Figure 8 (a)-(f) take
also into account the energy spent in each of the relay nodes during a transmission
towards the sink as well as the overhead of transferring the tracking information
(i.e. partially filled buffers) from one node to another as tracking progresses.
While the DDP and DOpt approaches yield the least overhead in terms of the size

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

Oliviu Ghica et al. · 19

 0

 20

 40

 60

 80

 100

 120

 140

 160

DDP DDR+DDP DDR+DOpt DDR DOpt RAW

La
te

nc
y

[s
]

Experimental Configuration

Walk
Bike
Car

(a) Using Synthetic Mobility Models

 0

 20

 40

 60

 80

 100

 120

 140

 160

DDP DDR+DDP DDR+DOpt DDR DOpt RAW

La
te

nc
y

[s
]

Experimental Configuration

Walk
Bike
Car

(b) Using Real-Traces

Figure. 11. Average Latency of Sink Updates

of transmitted data, as we mentioned in Section 3, each of them affects the “fresh-
ness” of the data at the sink, in terms of the latency of the sink’s knowledge about
the tracked object’s trajectory. As illustrated in Figure 11, the RAW approach ex-
hibits the smallest latency—basically, the time-interval between location updates
sent to the sink. We observe that although the DDP and DOpt approaches yield
the highest degree of energy savings, they also cause substantially long periods of
sink’s “un-awareness” about the actual motion of the tracked object. Although we
have averaged the results over all the simulation runs, it becomes apparent that the
Hybrid approaches are much better than the DDP/DOpt and, surprisingly, some-
times even better than the DDR in terms of the data-freshness in the sink. The
latter case is due to the fact that, when Cb is small and ε is large, the DDP/DOpt
components of the Hybrid approaches may cause an update of their own.

Having discussed the performance improvement of various algorithmic configu-
rations, we start focusing on the impact of the rest of the tuning parameters that
may alter the performances of the DDP/DOpt based approaches.

First, we start analyzing the impact of the Buffer Size (Cb) over the number of
segments ultimately transmitted to the sink node. While one may expect that the
larger the buffer, the better, as illustrated in Figure 12(a) and 12(c), a relatively
small buffer size is sufficient for attaining near-maximum performance—a particu-
larly important observation considering the strict memory limits in sensor nodes.
As shown, when the buffer capacity approaches 40 segments, the gain in the re-
duction of the number of segments transmitted using the DDP/DOpt approaches
is minimal – (approximately 0.5KB, assuming 4B per each of the X, Y and Time
coordinate value). Similar “saturation” is reached slightly earlier for the Hybrid
approaches (approximately 25 segments in the buffer). As expected, the Buffer Size
does not affect the number of transmitted segments when DDR approach is used.
Figures 12(b) and Figures 12(d) alternatively count the number of updates sent
to the sink node, each update consisting of one or more trajectory segments. In
such a setting, we observe that right around its saturation-point (Cb ≃ 25), the
Hybrid approach converges, in the number of updates, to DDR. This means that
for values of the buffer size Cb ≥ 25, it is the DDR part of the Hybrid approach
that is most likely to trigger an update to be sent to the sink, possibly causing the

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

20 · Oliviu Ghica et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 5 10 15 20 25 30 35 40

N
um

be
r

of
 S

eg
m

en
ts

Buffer Size [segments]

RAW
DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(a) Synthetic Mobility Model

 0

 100

 200

 300

 400

 500

 600

 700

 800

 5 10 15 20 25 30 35 40

N
um

be
r

of
 U

pd
at

es

Buffer Size [segments]

RAW
DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(b) Synthetic Mobility Model

 0

 100

 200

 300

 400

 500

 600

 700

 800

 5 10 15 20 25 30 35 40

N
um

be
r

of
 S

eg
m

en
ts

Buffer Size [segments]

RAW
DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(c) Real Traces

 0

 100

 200

 300

 400

 500

 600

 700

 800

 5 10 15 20 25 30 35 40

N
um

be
r

of
 U

pd
at

es

Buffer Size [segments]

RAW
DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(d) Real Traces

Figure. 12. Impact of the buffer size Cb over the number of updates and segments
transmitted.

data-reduction algorithm to execute over only a partially-filled buffer. Also, as can
be observed in Figures 12(a) and 12(c), indeed there exists a cross-over point at a
certain selection of the buffer size (Cb ≃ 8 for synthetic models, Cb ≃ 10 for real
traces) below which the performance of the DDP/DOpt components subside to the
DDR configuration.

We finalize this section by presenting experimental observations regarding the
impact of the Buffer Size and Buffer Mgmt policies used when specifying a given
TTQ (cf. Section 3.3).

Figure 13 depicts a breakdown of the influence of the threshold ξθ ∈ {0, .2, .4, .6, .8}
for different buffer sizes Cb = {10, 20, 40} when partial-scope reduction is being
adopted. As it can be seen, it confirms the intuition discussed in Section 3.3 re-
garding the potential impact of the choice of ξθ. Figure 13 (a) and (b) may appear
as anomalous, but they are actually illustrating the consequences of having small
buffer sizes. In such cases, most of the residual buffer sizes of subsequent iterations.
i.e., increasing ξθ in such cases will only reduce the effectiveness of the trajectory
reduction algorithm. As we mentioned in Section 3.3, apparently, there may be an
optimal value for determining when the local buffer should be transmitted to the
sink—however, such an investigation is beyond the scope of this work.

Figure 14 illustrates the improvement of the fully-scoped reduction vs. the par-
tial one. The Full-Scope reduction policy has an additional benefit: it appears,

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

Oliviu Ghica et al. · 21

 200

 300

 400

 500

 600

 700

 800

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
um

be
r

of
 S

eg
m

en
ts

Buffer Flush Threshold

DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(a) Cb = 10, synthetic model

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
um

be
r

of
 S

eg
m

en
ts

Buffer Flush Threshold

DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(b) Cb = 10, real trace

 200

 300

 400

 500

 600

 700

 800

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
um

be
r

of
 S

eg
m

en
ts

Buffer Flush Threshold

DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(c) Cb = 20, synthetic model

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
um

be
r

of
 S

eg
m

en
ts

Buffer Flush Threshold

DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(d) Cb = 20, real trace

 200

 300

 400

 500

 600

 700

 800

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
um

be
r

of
 S

eg
m

en
ts

Buffer Flush Threshold

DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(e) Cb = 40, synthetic model

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
um

be
r

of
 S

eg
m

en
ts

Buffer Flush Threshold

DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(f) Cb = 40, real trace

Figure. 13. Impact of buffer flush threshold ξθ over the number of trajectory segments transmitted
with partial-scope reduction

according to the results presented in Figure 15, that it is not too sensitive on the
particular value of ξθ for the purpose of improving the performance in terms of
number of trajectory segments and updates, as the Partial-Scope policy, rather
exhibiting consistent performances directly proportional to ξθ. We re-iterate, how-
ever, that the selection of ξθ should also account for the latency requirement of
the sink, enabling the user to achieve better performance trade-off for a particu-
lar latency-constraint. Lastly, as expected, the performance differences exhibited
between the DDP- and DOpt-based configurations are not very significant.

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

22 · Oliviu Ghica et al.

 0

 100

 200

 300

 400

 500

 600

 700

DDP DDR+DDP DDR+DOpt DDR DOpt RAW

N
um

be
r

of
 S

eg
m

en
ts

Experimental Configuration

Partial
Full

(a) Using Synthetic Mobility Models

 0

 100

 200

 300

 400

 500

 600

 700

DDP DDR+DDP DDR+DOpt DDR DOpt RAW

N
um

be
r

of
 S

eg
m

en
ts

Experimental Configuration

Partial
Full

(b) Using Real-Traces

Figure. 14. Impact of the scope of the line simplification over the number of seg-
ments transmitted

5. RELATED WORK

There are two large and complementary bodies of works that are relevant to our
results, originating in two different communities.
On one hand, the researchers in MOD have addressed the problem of trajectory

data reduction for the purpose of reducing the storage space requirement [Cao
et al. 2006] and considered the impact of the data reduction on the error in the
answer of different query types. This work assumed a complete knowledge of the
history of the objects’ motions and applied modified versions of the Douglas-Peuker
heuristic [Douglas and Peuker 1973] and the optimal algorithm developed by the
CG community [Chan and Chin 1996], appropriately modifying them so that the
temporal attribute was taken into account. The issues related to online reduction
were introduced in [Wolfson et al. 1999] where the original DR method used in this
paper was introduced. The impact of the online data reduction on the quality of the
archived trajectory was considered in [Trajcevski et al. 2006] and, subsequently, a
comprehensive study was conducted in [Lange et al. 2009] combining DR with other
techniques. While all these works had some form of a reduced bandwidth utilization
as a goal, they considered settings in which devices on-board moving objects directly
communicate with the MOD servers. We focused more on the peculiarities of the
problem when the tracking and transmission of the results to the sink has to be
done in WSN settings.
On the other hand, the researchers in WSNs have cast the problems of localization

and tracking as one of the canonical ones and the results abound [Cao et al. 2005;
Chen et al. 2003; Jeong et al. 2007; Mao and (ed.s) 2009; Pattem et al. 2003;
Tanin et al. 2008; Wang et al. 2005]. We note that, in this context, our work
did not address any of the energy-efficiency and accuracy aspects of the tracking
process per se—on the contrary, we completely relied on the existing works for the
implementation of our algorithms in the SIDnet simulator. However, we addressed a
complementary aspect to the tracking problem, namely, providing energy savings by
applying in-network data reduction of the trajectories obtained via tracking. We
demonstrated that sacrificing the accuracy and the “freshness” of the trajectory
data at the sink can yield up to 10 times less energy expenses during the routing

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

Oliviu Ghica et al. · 23

 200

 300

 400

 500

 600

 700

 800

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
um

be
r

of
 S

eg
m

en
ts

Buffer Flush Threshold

DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(a) Cb = 10, synthetic model

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
um

be
r

of
 S

eg
m

en
ts

Buffer Flush Threshold

DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(b) Cb = 10, real trace

 200

 300

 400

 500

 600

 700

 800

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
um

be
r

of
 S

eg
m

en
ts

Buffer Flush Threshold

DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(c) Cb = 20, synthetic model

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
um

be
r

of
 S

eg
m

en
ts

Buffer Flush Threshold

DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(d) Cb = 20, real trace

 200

 300

 400

 500

 600

 700

 800

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
um

be
r

of
 S

eg
m

en
ts

Buffer Flush Threshold

DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(e) Cb = 40, synthetic model

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
um

be
r

of
 S

eg
m

en
ts

Buffer Flush Threshold

DDR
DDP
DOpt

DDR+DDP
DDR+DOpt

(f) Cb = 40, real trace

Figure. 15. Impact of buffer flush threshold on the number of segments with full-
scope reduction

process.
A recent work that is very similar in spirit to ours is presented in [Xu and Lee

2007] where a delay-tolerant trajectory compression (DTTC) is applied to reduce
the size of the transmitted data pertaining to tracking-based trajectories of mov-
ing objects. DTTC exploits the trade-offs among the delay-tolerance, accuracy,
and the energy saving based on forming clusters in a given network, and relying
on the cluster-heads to generate a compact description of a given (partial) trajec-
tory. Although the objectives are the same, the specific approach taken in [Xu and
Lee 2007] is complementary to ours—namely, we do not consider clustering of the
underlying nodes in WSNs, and we apply different data-reduction techniques.
Another recent work which addresses similar problem as part of our work is given

in [Abam et al. 2007], where line simplification algorithms are considered in stream-

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

24 · Oliviu Ghica et al.

ing (limited memory) settings. Both Hausdorff and Fréchet distances are used when
applying the error-tolerance and algorithms are presented allowing augmentation
of the memory resources under competitive ratios. In a similar context, in this
article, we addressed the issue of ξθ as a parameter that can be used for managing
the Buffer Size of the tracking nodes under two different Buffer Mgmt policies –
however, the overall scope of our work is focused on the communication/energy
savings in WSN settings.

6. CONCLUSIONS AND FUTURE WORK

We addressed the problem balancing the energy-savings with the delay/precision
of the tracking-based trajectories’ data management in WSN settings, and investi-
gated the potential benefits of applying distributed spatio-temporal data reduction
techniques. We proposed and analyzed three approaches: DDR, DDP and DOpt;
and we also considered two additional hybrid-like combinations: (DDR,DDP) and
(DDR,DOpt). Our experiments demonstrated the benefits of the proposed methods
in terms of networks energy expenditures, as well as trade-offs between the data
freshness at the sink and the total amount of the communicated data. We also
considered and experimentally evaluated different policies for managing the local
buffer in the tracking nodes, and demonstrated that selection of different values
could further improve the network-wide energy savings.
There are several immediate extensions to this work. The first task is to in-

corporate some more realistic parameters related to the tracking aspect in our
algorithms, e.g., incorporating the impact of tracking errors and leader selections;
better time-synchronization [Sundararaman et al. 2005] and energy vs. accuracy
trade-offs of the tracking process per se [Pattem et al. 2003; Pattem et al. 2008]; etc.
Concurrently with this, we would like to investigate the prospect of dynamically
adjusting the value of the Buffer size Cb and of the buffer flush threshold ξθ in the
DDP/DOpt and the Hybrid approaches for the purpose of further improving the
balance between the near-past accuracy and the freshness of the data at the sink,
and incorporate the sleeping schedule of the nodes as a parameter for balancing the
accuracy.
Our long term goal is to adapt the approaches presented here, in order to

tackle the efficient processing of some spatio-temporal queries (e.g., range, nearest-
neighbor) in WSN settings and exploit the energy vs. accuracy trade-offs, especially
when there are multiple such queries posed from multiple sinks.

REFERENCES

www.openstreetmap.org.

Abam, M. A., de Berg, M., Hachenberger, P., and Zarei, A. 2007. Streaming algorithms for
line simplification. In Symposium on Computational Geometry.

Akkaya, K. and Younis, M. 2005. A survey on routing protocols for wireless sensor networks.
Ad Hoc Networks 3, 3.

Alaybeyogly, A., Erciyes, K., Kantarci, A., and Dagdeviren, O. 2010. Tracking fast moving
targets in wireless sensor networks. IETE Technical Review 27, 1.

Bai, F., Sadagopan, N., and Helmy, A. 2003. Important: A framework to systematically analyze
the impact of mobility on performance of routing protocols for adhoc networks. In INFOCOM.

Bhattacharya, S., Xing, G., Lu, C., Roman, G.-C., Chipara, O., and Harris, B. 2005. Dy-
namic wake-up and topology maintenance protocols with spatiotemporal guarantees. In IPSN.

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

Oliviu Ghica et al. · 25

Bose, P., Chen, D. Z., Deascu, O., Goodrich, M. T., and Snoeyink, J. 2002. Efficiently

approximating polygonal paths and three and higher dimensions. Algorithmica 33, 4.

Boyd, S., Ghosh, A., Prabhakar, B., and Shah, D. 2006. Randomized gossip algorithms. IEEE
Transactions on Information Theory 52, 6, 2508–2530.

Camp, T., Boleng, J., and Davies, V. 2002. A survey of mobility models for ad hoc network
research. Wireless Communications and Mobile Computing 2, 5.

Cao, H., Wolfson, O., and Trajcevski, G. 2006. Spatio-temporal data reduction with deter-
ministic error bounds. VLDB Journal 15, 3.

Cao, Q., Abdelzaher, T., He, T., and Stankovic, J. 2005. Towards optimal sleep scheduling
in sensor networks for rare-event detection. In IPSN.

Cao, Q., Yan, T., Stankovic, J., and Abdelzaher, T. 2005. Analysis of target detection
performance for wireless sensor networks. In DCOSS. 276–292.

Chan, W. and Chin, F. 1996. Approximation of polygonal curves with minimum number of line
segments or minimum error. International Journal on Computational Geometry and Applica-
tions 6, 1.

Chen, W., Hou, J., and Sha, L. 2003. Dynamic clustering for acoustic target tracking in wireless
sensor networks. In IEEE International Conference on Network Protocols (ICNP’03).

Dietrich, I. and Dressler, F. 2009. On the lifetime of wireless sensor networks. TOSN 5, 1.

Dodge, S., Weibel, R., and Forootan, E. 2009. Revealing the physics of movement: Comparing
the similarity of movement characteristics of different types of moving objects. Computers,
Environments and Urban Systems. doi:10.1016/j.compenvurbsys.2009.07.008.

Douglas, D. and Peuker, T. 1973. Algorithms for the reduction of the number of points required
to represent a digitised line or its caricature. The Canadian Cartographer 10, 2.

Gedik, B. and Liu, L. 2006. Mobieyes: A distributed location monitoring service using moving
location queries. IEEE Transactions on Mobile Computing 5, 10.

Ghica, O., Trajcevski, G., Scheuermann, P., Bischoff, Z., and Valtchanov, N. 2008. Sidnet-
swans: A simulator and integrated development platform for sensor networks applications. In
SenSys.

Hartung, C., Han, R., Seielstad, C., and Holbrook, S. 2006. Firewxnet: a multi-tiered
portable wireless system for monitoring weather conditions in wildland fire environments. In
MobiSys.

He, G. and Hou, J. C. 2005. Tracking targets with quality in wireless sensor networks. In 13th
IEEE International Conference on Network Protocols (ICNP).

He, T., Vicaire, P., Yan, T., Luo, L., Gu, L., Zhou, G., Stoleru, R., Cao, Q., Stankovic,
J. A., and Abdelzaher, T. F. 2006. Achieving real-time target tracking usingwireless sensor
networks. In IEEE Real Time Technology and Applications Symposium.

Hershberger, J. and Snoeyink, J. 1992. Speeding up the douglas-peuker line-simplification
algorithm. In Proceedings of the 5th International Symposium on Spatial Data Handling.

Imai, H. and Iri, M. 1988. Polygonal approximations of a curve-formulations and algorithms. In
Computational Morphology. Elsevier Science Publishers, New York, N.Y., 71–86.

Jeong, J., Guo, S., He, T., and Du, D. 2008. Apl: Autonomous passive localization for wireless
sensors deployed in road networks. In INFOCOM.

Jeong, J., Hwang, T., He, T., and Du, D. H.-C. 2007. Mcta: Target tracking algorithm based
on minimal contour in wireless sensor networks. In INFOCOM.

Kim, S., Pakzad, S., Culler, D. E., Demmel, J., Fenves, G., Glaser, S., and Turon, M. 2007.
Health monitoring of civil infrastructures using wireless sensor networks. In IPSN. 254–263.

Krishnamachari, B., Estrin, D., and Wicker, S. 2002. Impact of data aggregation in wire-
less sensor networks. In Proc. International Workshop on Distributed Event-Based Systems
(DEBS).

Lange, R., Farrell, T., Dürr, F., and Rothermel, K. 2009. Remote real-time trajectory
simplification. In PerCom.

Lazos, L., Poovendran, R., and Ritcey, J. A. 2009. Analytic evaluation of target detection in
heterogeneous wireless sensor networks. TOSN 5, 2.

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

26 · Oliviu Ghica et al.

Lee, S., Muhammad, R. M., and Kim, C. 2007. A leader election algorithm within candidates

on ad hoc mobile networks. In ICESS.

Liang, B. and Haas, Z. J. 2003. Predictive distance-based mobility management for multidi-
mensional pcs networks. IEEE/ACM Trans. Netw. 11, 5, 718–732.

Madden, S., Franklin, M., Hellerstein, J., and Hong, W. 2002. Tag: a tiny aggregation
service for ad hoc sensor network. In Proc. Fifth Symp. on Operating Systems Design and
Implementation, USENIX OSDI.

Madden, S., Franklin, M., Hellerstein, J., and Hong, W. 2005. Tinydb: An acquisitional
query processing system for sensor networks. ACM TODS 30, 1.

Manjhi, A., Nath, S., and Gibbons, P. B. 2005. Tributaries and deltas: Efficient and robust
aggregation in sensor network streams. In SIGMOD Conference.

Mao, G. and (ed.s), B. F. 2009. Localization Algorithms and Strategies for Wireless Sensor
Networks. IGI Global – Invormation Science Publishing.

Mueller, J. 1968. An introduction to the hydraulic and topographic sinuosity indexes1. 371.

Niculesu, D. and Nath, B. 2003. Trajectory based forwarding and its applications. In MOBI-
COM.

Pattem, S., Krishnamachari, B., and Govindan, R. 2008. The impact of spatial correlation on
routing with compression in wireless sensor networks. TOSN 4, 4.

Pattem, S., Poduri, S., and Krishnamachari, B. 2003. Energy-quality tradeoffs for target
tracking in wireless sensor networks. In IPSN.

Poduri, S., Pattem, S., Krishnamachari, B., and Sukhatme, G. S. 2009. Using local geometry
for tunable topology control in sensor networks. IEEE Trans. Mob. Comput. 8, 2.

Santi, P. 2005. Topology Control in Ad Hoc and Sensor Networks. John Wiley & Sons.

Shrivastava, N., Buragohian, C., Agrawal, A., and Suri, S. 2004. Medians and beyond:
New aggregation techniques for sensor networks. In ACM Conference on Embedded Networked
Sensor Systems (SenSys).

Singh, S., Woo, M., and Raghavendra, C. 1998. Power-aware routing in mobile ad hoc net-
works. In Proceedings of the Fourth Annual ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom).

Song, W., Wang, Y., Li, X., and Frieder, O. 2004. Localized algorithms for energy efficient
topology in wireless ad hoc networks. In MobiHoc (Anchorage, AK).

Sundararaman, B., Buy, U., and Kshemkalyani, A. D. 2005. Clock synchronization for wireless
sensor networks: a survey. Ad Hoc Networks 3, 3, 281–323.

Szewczyk, R., Mainwaring, A. M., Polastre, J., Anderson, J., and Culler, D. E. 2004. An
analysis of a large scale habitat monitoring application. In SenSys.

Tanin, E., Chen, S., Tatemura, J., and Hsiung, W.-P. 2008. Monitoring moving objects using
low frequency snapshots in sensor networks. In MDM.

Trajcevski, G., Cao, H., Wolfson, O., Scheuermann, P., and Vaccaro, D. 2006. On-line
data reduction and the quality of history in moving objects databases. In MobiDE.

Wang, H., Yao, K., and Estrin, D. 2005. Information-theoretic approaches for sensor selection
and placement for target localization and tracking in sensor networks. Journal of Communi-
cations and Networks 7, 4.

Werner-Allen, G., Lorincz, K., Welsh, M., Marcillo, O., Johnson, J., Ruiz, M., and Lees,
J. 2006. Deploying a wireless sensor network on an active volcano. IEEE Internet Comput-
ing 10, 2.

Wolfson, O., Sistla, A. P., Chamberlain, S., and Yesha, Y. 1999. Updating and querying
databases that track mobile units. Distributed and Parallel Databases 7.

Wu, S. and Candan, K. S. 2007. Power-aware single- and multipath geographic routing in sensor

networks. Ad Hoc Networks 5, 7.

Xu, Y. and Lee, W.-C. 2007. Compressing moving object trajectory in wireless sensor networks.
IJDSN 3, 2.

Yang, L., Feng, C., Rozenblit, J. W., and Qiao, H. 2006. Adaptive tracking in distributed
wireless sensor networks. In ECBS.

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

Oliviu Ghica et al. · 27

Zhang, Q., Sobelman, G. E., and He, T. 2009. Gradient-based target localization in robotic

sensor networks. Pervasive and Mobile Computing 5, 1.

Zhang, W. and Cao, G. 2004. Dctc: Dynamic convoy tree-based collaboration for target tracking
in sensor networks. IEEE Transcations on Wireless Communication.

Zhong, Z., Zhu, T., Wang, D., and He, T. 2009. Tracking with unreliable node sequences. In
INFOCOM. 1215–1223.

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

28 · Oliviu Ghica et al.

Oliviu Ghica received his B.Sc. degree in Computer and Electrical En-
gineering from ”Politehnica” University of Bucharest, Romania, in 2002,
followed by a M.Sc. degree at Northwestern University, USA, in 2006, in
Electrical Engineering and Computer Sciences. He is currently a PhD can-
didate in the Department of Electrical Engineering and Computer Sciences
at Northwestern University, USA. His research interest cover spatio-temporal
data management and routing in large-scale wireless sensor networks with
a particular interest in energy efficiency and lifetime benefits of algorithmic
implementations. He is currently an active player in open-source communi-
ties focusing on simulation methodologies for sensor network applications.

Goce Trajcevski received his B.Sc. degree from the University of Sts. Kiril
i Metodij, and his MS and PhD degrees from the University of Illinois at
Chicago. His main research interests are in the areas of spatio-temoral data
management, routing and data management in wireless sensor networks, and
reactive behavior in dynamic systems. He has published over 45 papers in
refereed conferences and journals and received a Best Paper Award at the
CoopIS conference (2000), as well as US Geological Survey Scholar Award
(2000). His research has been funded by BEA, Northrop Grumman Corp.
and the NSF. He is currently an Assistant Chairman with the Department
of Electrical Engineering and Computer Science at the Northwestern Uni-
versity.

Ouri Wolfson’s main research interests are in database systems, distributed
systems, and mobile/pervasive computing. He received his B.A. degree in
mathematics, and his Ph.D. degree in computer science from Courant Insti-
tute of Mathematical Sciences, New York University. He is currently the
Richard and Loan Hill Professor of Computer Science at the University
of Illinois at Chicago, where he directs the Databases and Mobile Com-
puting Laboratory, and the newly established Mobile Information Systems
Research Center. He is also an Affiliate Professor in the Department of
Computer Science at the University of Illinois at Urbana Champaign. He
served as a consultant to Argonne National Laboratory, to the US Army
Research Laboratories, to DARPA, and to the Center of Excellence in Space
Data and Information Sciences at NASA. He is the founder of Mobitrac,
a high-tech startup specializing in advanced fleet management software; it
had about forty employees in Chicago and listed major companies such as
Fedex among it clients, before being acquired by Fluensee. Most recently he
founded Pirouette Software Inc., and currently serves as its President. The
company specializes in Mobile Peer-to-Peer software for local search. Before
joining the University of Illinois he has been on the computer science fac-
ulty at the Technion and Columbia University, and he has been a Member
of Technical Staff at Bell Laboratories.

Ugo Buyis an Associate Professor in the Department of Computer Science
of the University of Illinois at Chicago. He obtained his MS and PhD degrees
in Computer Science from the University of Massachusetts at Amherst in
1983 and 1990, respectively. From 1983 to 1986 he was a Senior Software En-
gineer with the Digital Equipment Corporation in Hudson, Massachusetts.
He has been on the UIC faculty since 1990. His main research interests are
in software engineering. He has been involved in several projects sponsored
by NSF and NIST whose common goal is the definition of techniques and
tools for enhancing the reliability of concurrent and real-time software. He is
currently investigating techniques and tools for supporting the development
of software running on multicore architectures.

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

Oliviu Ghica et al. · 29

Peter Scheuermann is a Professor of Electrical Engineering and Computer
Science at Northwestern University. He has held visiting professor positions
with the Free University of Amsterdam, the University of Hamburg, the
Technical University of Berlin and the Swiss Federal Institute of Technol-
ogy, Zurich. During 1997-1998 he served as Program Director for Operating
Systems at the NSF. Dr. Scheuermann has served on the editorial board
of the Communications of ACM, The VLDB Journal, IEEE Transactions
on Knowledge and Data Engineering and is currently an associate editor of
Data and Knowledge Engineering. His research interests are in distributed
database systems, mobile computing, sensor networks and data mining. He
has published more than 120 journal and conference papers. His research
has been funded by NSF, NASA, HP, Northrop Grumman, and BEA, among
others. Peter Scheuermann is a Fellow of IEEE and AAAS (American As-
sociation for the Advancement of Science).

Fan Zhou received the BS degree in computer science from Sichuan Univer-
sity, China, in 2003 and the MS degree in computer science and engineering
from University of Electronic Science and Technology of China, in 2006. He
is now a PhD candidate at the University of Electronic Science and Technol-
ogy of China, currently working at the DBSN lab at Northwestern University
as a pre-doctoral visiting scholar. His research interests include mobile com-
puting and wireless sensor networks.

Dennis Vaccaro is the Director of Advanced Projects for Northrop Grum-
man Corporation, Technical Services Sector in Rolling Meadows, IL. He has
broad and extensive engineering and program management experience in-
volving state-of-the-art military electronic systems. He has a strong record
of successful product development, fiscal performance, business development
and growth, technical innovation, and customer relations. He is currently
a senior member of the IEEE, a member of the Association of Old Crows
(AOC), and Awards Chairman of the AOC Windy City Roost Board of Di-
rectors. He holds several US Patents related to sensor devices and networks.
In 2000, he was awarded the Technology Pioneer Award by the AOC. In
2003, he was elected to the AOC Electronic Warfare (EW) Hall of Fame.

International Journal of Next-Generation Computing, Vol. 1, No. 1, 09 2010.

