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ABSTRACT 1. INTRODUCTION

When monitoring spatial phenomena with wireless sensor networks Networks of small, wireless sensors are becoming increasingly pop-
selecting the best sensor placements is a fundamental task. Notlar for monitoring spatial phenomena, such as the temperature dis-
only should the sensors be informative, but they should also be ableyipytion in a building [5]. Since only a limited number of sensors

to communicate efficiently. In this paper, we present a data-driven can be placed, it is important to deploy them at most informative

approach that addresses the three central aspects of this problemo . "o e 4o Cine nature of wireless communication
measuring the predictive quality of a set of sensor locations (re- . ' '

gardless of whether sensors were ever placed at these locations)p0or link qualities, such as those between sensors which are too far
predicting the communication cost involved with these placements, apart, or even nearby nodes that are obstructed by obstacles such
and designing an algorithm with provable quality guarantees that as walls or radiation from appliances, require a large number of re-
ﬁ)‘gt(ljnglzlgsrtr?een’t\ltl?)ﬂﬁlirl?j tﬁ%ﬂeogfasr#;ﬁ'gcaﬁgﬂgﬁigf{? %aotgef'lrg'g‘aﬁé’é‘ transmissions in order to collect the data effectively. Such retrans-
Gausgiax Processé&Ps) bo?h for the sppatial phenomena of inter- missions drastically consume battery power, and hence.decrease the
est and for the spatial variability of link qualities, which allows overall deployment lifetime of the sensor network. This suggests
us to estimate predictive power and communication cost of un- thatcommunication cost is a fundamental constraint which must be
sensed locations. Surprisingly, uncertainty in the representation oftaken into account when placing wireless sensors.

link qualities plays an important role in estimating communication Existing work on sensor placement under communication constraints
costs. Using these models, we present a novel, polynomial-time,

data-driven algorithmpSPIEL which selects Sensor Placements
at Informative and cost-Effective Locations. Our approach exploits
two important properties of this problersubmodularityformaliz-

ing the intuition that adding a node to a small deployment can help
more than adding a node to a large deployment;lacality, under
which nodes that are far from each other provédimostindepen-
dent information. Exploiting these properties, we prove strong ap-
proximation guarantees for opSPIELapproach. We also provide
extensive experimental validation of this practical approach on sev-
eral real-world placement problems, and built a complete system
implementation on 46 Tmote Sky motes, demonstrating significant
advantages over existing methods.
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[11, 13, 6] has considered the problem mainly from a geometric
perspective: Sensors have a fixaehsing regionsuch as a disc
with a certain radius, and can only communicate with other sensors
which are at most a specified distance apart. These assumptions
are problematic for two reasons. Firstly, the notion dfemsing
regionimplies that sensors can perfectly observe everything within
the region, but nothing outside, which is unrealistic: e.g., the tem-
perature can be highly correlated in some areas of a building but
very uncorrelated in others.{., Fig. 2(a)). Moreover, sensor read-
ings are usually noisy, and one wants to make predictions utilizing
the measurements of multiple sensors, making it unrealistic to as-
sume that a single sensor is entirely responsible for a given sensing
region. Secondly, the assumption that two sensors at fixed locations
can either perfectly communicate (i.e., they are “connected”) or not
communicate at all (and are “disconnected”) is unreasonable, as it
does not take into account variabilities in the link quality due to
moving obstacles (e.qg., doors), interference with other radio trans-
missions, and packet loss due to reflections [2]. In order to avoid
thesensing regiomssumption, previous work [3] establish@db-
abilistic modelsas an appropriate framework for predicting sensing
quality by modeling correlation between sensor locations. In [9],
we present a method for selecting informative sensor placements
based on oumutual informatiorcriterion. We show that this cri-
terion leads to intuitive placements with superior prediction accu-
racy when compared to existing methods. Furthermore, we pro-
vide an efficient algorithm for computing near-optimal placements
with strong theoretical performance guarantees. However, this al-
gorithm does not take communication costs into account.

In this paper, we address the general (and much harder) problem
of selecting sensor placements that are simultaneously informative,
and achieve low communication cost. Note that this problem can-
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tions, and then connecting them up with the least cost—indeed,
it is easy to construct examples where such a two-phase strategy
performs very poorly. We also avoid tl®nnectednesassump-

tion (sensors are “connected” iff they can perfectly communicate):
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Figure 1: (a) Indoor deployment of 54 nodes and an example placement of six sensors (squares) and three relay nodes (diamonds);
(b) measured transmission link qualities for node 41; (c) GP fit of link quality for node 41 and (d) shows variance of this GP estimate.
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Figure 2: (a) Measured temperature covariance between node 41 and other nodes in the deployment; (b) predicted covariance using
non-stationary GP; (c) predicted temperatures for sensor readings taken at noon on February 28th 2004, and (d) shows the variance
of this prediction.

In this paper, we use thexpected number of retransmissiasa involved in optimizing sensor placements. s&nsor placemeris
cost metric on the communication between two sensors. This costa finite subset of locationgl from a ground seV. Any possible
metric directly translates to the deployment lifetime of the wireless placement is assignedsensing qualityF'(.A) > 0, and acom-
sensor network. We propose to use the probabilistic framework of munication cost(.A) > 0, where the functiong” andc will be
Gaussian Processa®t only to model the monitored phenomena, defined presently. We will use a temperature prediction task as a
but also to predict communication costs. running example: In this example, our goal is to deploy a network
Balancing informativeness of sensor placements with the need toof wireless sensors in a building in order to monitor the temperature
communicate efficiently can be formalized as a novel discrete op- field, e.g., to actuate the air conditioning or heating system. Here,
timization problem; it generalizes several well-studied problems, the sensing quality refers to our temperature prediction accuracy,
thus appearing to be a fundamental question in its own. We presentand the communication cost depends on how efficiently the sensors
a novel algorithm for this placement problem in wireless sensor net- communicate with each other. More generally, we investigate the
works; the algorithm selects sensor placements achieving a speciproblem of solving optimization problems of the form
f!ed amount of certai.n.ty, with apprqximately m.inimal communica- min c(A) subject toF (A) > Q, )
tion cost. More specifically, our main contributions are: ACY
e A unified method for learning a probabilistic model of the
underlying phenomenon and for the expected communica-
tion cost between any two locations from a small, short-
term initial deployment. These models, basedGaussian
Processesallow us to avoid strong assumptions previously
made in the literature.
e A novel and efficient algorithm for Sensor Placements at In- max F'(A) subjecttoc(A) < B, 2)
formative and cost-Effective Locations§PIEL). Exploiting ACY
the concept osubmodularitythis algorithm is guaranteed to  for somebudgetB > 0. This optimization problem aims at finding
provide near-optimal placements for this hard problem. the most informative placement subject to a budget on the commu-
e A complete solution for collecting data, learning models, op- nication cost, and is called tmeaximization problemin this paper,
timizing and analyzing sensor placements, realized on Tmote we present efficient approximation algorithms for both the covering
Sky motes, which combines all our proposed methods. and maximization problems.
e Extensive evaluations of our proposed methods on temper- . . .
ature and light prediction tasks, using data from real-world 2.1 ~What is sensing quality?
sensor network deployments, as well as on a precipitation In order to quantify how informative a sensor placement is, we have
prediction task in the Pacific Northwest. to establish a notion of uncertainty. We associate a random variable
Xs € Xy with each locatiors € V of interest; for a subsed C V,
let X4 denote the set of random variables associated with the lo-
2. PROBLEM STATEMENT cations.A. In our temperature measurement example; R? de-

In this section, we briefly introduce the two fundamental quantities scribes the subset of coordinates in the building where sensors can

for somequota@ > 0, which denotes the required amount of cer-
tainty achieved by any sensor placement. This optimization prob-
lem aims at finding the minimum cost placement that provides a
specified amount of certaint®, and is called theovering prob-
lem We also address the dual problem of solving



be placed. Our probabilistic model will describe a joint probability
distribution over all these random variables. In order to make pre-
dictions at a locatiors, we will consider conditional distributions
P(Xs = zs | Xa = xa4), where we condition on all observa-
tionsx 4 made by all sensotd in our placement. To illustrate this
concept, Fig. 2(c) shows the predicted temperature field given the

measurements of the 54 sensors we deployed, and Fig. 2(d) shows2

the variance in this distribution.
We use the conditional entropy of these distributidfi$X, | X4) =

e xa P(xs,x4)log P(zs | x4)dzsdx 4 to assess the uncer-
tainty in predictingXs. Intuitively, this quantity expresses how
“peaked” the conditional distribution of; given X 4 is around the
most likely value, averaging over all possible observatidhs =
x 4 the placed sensors can make. To quantify how informative a
sensor placemend is, we use the criterion ahutual information

F(A) = I(Xa; Xv-n) = H(Xv-un) — H(Xv-a | Xa). (3)

This criterion expresses the expected reduction of entropy of all
locationsy—A where we did not place sensors, after taking into ac-

count the measurements of our placed sensors. We first proposed

this criterion in [9], and showed that it leads to intuitive placements
with prediction accuracy superior to existing approaches. Sec. 3 ex-
plains how we model and learn a joint distribution over all locations
V and how to efficiently compute the mutual information.

2.2 What is communication cost?

point, and infinite if the link quality is below the cut-off point,
then the communication cost of a sensor placement is exactly (one
less than) the number of placed sensors. Hence, in this special
case, we can interpret the maximization problem (2) as the prob-
lem of finding the most informative sensor placement of at nibst
nodes.

.3 Overview of our approach

Having established the notions of sensing quality and communica-
tion cost, we now present an outline of our proposed approach.

1. We collect sensor and link quality data from an initial de-
ployment of sensors. From this data, we learn probabilis-
tic models for the sensor data and the communication cost.
Alternatively, we can use expert knowledge to design such
models.

. These models allow us to predict the sensing qualifyl)

and communication cost(.4) for any candidate placement
ACVY.

UsingpSPIEL our proposed algorithm, we then find highly
informative placements which (approximately) minimize com-
munication cost. We can approximately solve both the cov-
ering and maximization problems.

After deploying the sensors, we then possibly add sensors
or redeploy the existing sensors, by restarting from Step 2),
until we achieve a satisfactory placement. (This step is op-
tional.)

Consider our temperature prediction example. Here, in step 1), we

3.

4.

Since each transmission drains battery of the deployed sensors, wavould place a set of motes throughout the building, based on geo-

have to ensure that our sensor placements have reliable commu

metrical or other intuitive criteria. After collecting training data

nication links, and the number of unnecessary retransmissions isconsisting of temperature measurements and packet transmission

minimized. If the probability for a successful transmission between
two sensor locationsandt is 65 ., the expected number of retrans-
missions isl /65 ;. Since we have to predict the success probability
between any two locations ¢ € V, we will in general only have

a distributionP(0s,+) with densityp(0s,:) instead of a fixed value
for 65, Surprisingly, this uncertainty has a fundamental effect on

the expected number of retransmissions. For a simple example,

assume that with probabilitg we predict that our transmission
success rate i$, and with probability, itis . Then, the mean
transmission rate would bg, leading us to assume that the ex-
pected number of retransmissions might2bdn expectation over

the success rate however, our expected number of retransmission
become% 443 -3 =2+ 2 > 2. More generally, the expected
number is

o({s,t}) = /6 ip(es,t)des,t. @)

Using this formula, we can compute the expected number of re-
transmissions for any pair of locations.Mfis finite, we can model

all locations inV as nodes in a graph, with the edges labeled by
their communication costs. We call this graph tmenmunication
graphof V. For any sensor placemedAtC V, we define its cost by
the minimum costtre@, A C 7 C V, connecting all sensor4 in

the communication graph fa?. (In general, the locationd may
include distant sensors, requiring us to plaslay nodeswhich do

not sense but only aid communication.) Finding this minimum cost
tree7 to evaluate the cost functiar{.A) is called theSteiner tree
problem; arlNP-complete problem that has very good approxima-
tion algorithms [18]. Our algorithnpSPIEL will however not just
find an informative placement and then simply add relay nodes,
since the resulting cost may be exorbitant. Insteadinitultane-
ouslyoptimizes sensing quality and communication cost.

Note that it if we threshold all link qualities at some specified cut-
off point, and define the edge costs between two locations in the
communication graph ak if the link quality is above the cut-off

logs, in step 2), we learn probabilistic models from the data. This
process is explained in the following Sections. Fig. 2(c) and Fig. 2(d)
present examples of the mean and variance of our model learned
during this step. As expected, the variance is high in areas where
no sensors are located. In step 3), we would then explore the sens-
ing quality tradeoff for different placements proposedd8PIEL

and select an appropriate one. This placement automatically sug-
gests if relay nodes should be deployed. After deployment, we can
collect more data, and, if the placement is not satisfactory, iterate
step 2).

3. PREDICTING SENSING QUALITY

In order to achieve highly informative sensor placements, we have
to be able to predict the uncertainty in sensor values at a location
s € V, given the sensor values, at some candidate placement
A. This is an extension of the well-known regression problem [8],
where we use the measured sensor data to predict values at loca-
tions where no sensors are placed. The difference is that in the
placement problem, we must be able to predict not just sensor val-
ues at uninstrumented locations, but ragm@bability distributions

over sensor valuessaussian Processese a powerful formalism

for making such predictions. To introduce this concept, first con-
sider the special case of the multivariate normal distribution over a
setX), of random variables associated witHocationsy:

1
Pty =)= Gy

— 3y =) TS (xy —p)

This model has been successfully used for example to model tem-
perature distributions [5], where every locatiorlircorresponds to
one particular sensor placed in the building. The multivariate nor-
mal distribution is fully specified by providing a mean vectoaind

a covariance matrix. If we know the values of some of the sen-
sorsA C V, we find that fors € V—A the conditional distribution
P(Xs = zs | X4 = x4) is a normal distribution, where mean



g4 @nd variancerflA are given by
oA = ps + ZeaS (x4 — pa), ©)
ola = 0 —TaaS LS. (6)

Hereby,>X, 4 = Eﬂs is a row vector of the covariances af, with
all variables inX 4. Similarly, X 4 4 is the submatrix of, only
containing the entries relevant.id,, ando? is the variance ofts.

na andus are the means ok 4 and X, respectively. Hence the

covariance matri and the mean vectqr contain all the informa-
tion needed to compute the conditional distributionstyfgiven

around a set of reference points. These reference points are chosen
on a grid or near the likely sources of nonstationary behavior. The
stationary GPs are combined into a nonstationary GP, whose co-
variance function interpolates the empirical covariance matrix es-
timated from the initial sensor deployment, and near the reference
points behaves similarly to the corresponding stationary process.
Fig. 2(b) shows a learned nonstationary GP for our temperature
data. Due to space limitations, we refer to [17] for details.

Once we have obtained estimates for the mean and covariance func-
tions, we can use these functions to evaluate our mutual information
criterion. In order to evaluate Eqg. (3), we need to compute condi-

X4. The goal of an optimal placement will intuitively be to select tional entropies? (X, | X.4), which involve integrals over all pos-
the observations such that the posterior variance (6) for all variables sible assignments to the placed sensqis Fortunately, there is a
becomes uniformly small. If we can make a sefaheasurements  closed form solution: We find that

xﬁ,”, ... ,xﬁ,ﬂ of all sensorg’, we can estimat& andy, and use 1
it to compute predictive distributions for any subsets of variables. H(Xy-a | Xa) = 5 log((2me)" det Byaja),

However, in the sensor placement problem, we must reason about

the predictive quality of locations where we dot yet have sen- hence it only depends on the determinant of the predictive covari-
sors, and thus need to compute predictive distributions, conditional ance matrix:y._j.4. HerebyXy._ 4 4 can be inferred using Eq. (6).
on variables for which we do not have sample data. For details on efficient computatianf., [9].

Gaussian Processes are a solution for this dilemma. Technically,

a Gaussian Process (GP) is a joint distribution over a (possibly in- 4. PREDICTING COMMUNICATIONCOST

finite) set of random variables, such that the marginal distribution . . . .
over any finite subset of variables is multivariate Gaussian. In our AS discussed in Sec. 2.2, an appropriate measure for communica-
temperature measurement example, we would associate a randorffOn COSt IS the gxpgcted number of retransmissions. If we have a
variable X (s) with each point in the building, which can be mod-  Probability distribution(0s,) over transmission success proba-
eled as a subsat C R%. The GPX(-), which we will refer to as bilities 6+, Eq. (4) can be used ina Bayesmn approach to compute
thesensor data processs fully specified by anean functionM((+) _the expected _nu_mbe_r Of. retransmissions. 'I_'he_ problem of determl_n-
ing such predictive distributions for transmission success probabil-

and a symmetric positive definitéernel functionC(-, -), general- LD _g S o o
izing the mean vector and covariance matrix in the multivariate nor- 'ti€S is very similar to the problem of estimating predictive distrib-
utions for the sensor values as discussed in Sec. 3, suggesting the

mal distribution: For any random variabfg(s) € X', M(s) will e "

correspond to the mean &f(s), and for any two random variables ~ US€ of GPs for predicting link qualities. A closer look however

X(s), X(t) € X, K(s, ) will be the covariance ok (s) and.X () shows several qualitative differences: When learning a model for

This 7imp|ies that for any finite subset — {si,ss,...,s }' sensor values, samples from the actual values can be obtained. In

AC YV of locations variables. the covariance m’ati]’m ’Of”{hé the link quality case however, we can only determine whether cer-

varﬁblesXA is obtained by ' tain messages between nodes were successfully transmitted or not.
Additionally, transmission success probabilities are constrained to

K(s1,81) K(s1,82) K(s1,8m) be between 0 and 1. Fortunately, GPs can be extended to handle
K(s2,51) K(s2,52) K(s2,5m) this case as well [4]. In thislassificationsetting, the predictions
Yaa= : : : ) of the GP are transformed by the sigmoid, also called link function,
: : : =-—L___ For large positive values af, is close to
K(smy 1) K(5m, 52) K (5, $m) f(z) 1+exp(—x) gep f(xz

1, for large negative values it is closed@nd f(0) = 3.
and its mean igi 4 = (M(s1), M(s2), ..., M(sm)). Using for- Since we want to predict link qualities for evepgir of locations
mulas (5) and (6), the problem of computing predictive distribu- in ), we define a random proce€Xs,t) = f(W (s,t)), where
tions is reduced to finding the mean and covariance functiehs W (s, t) is a GP over(s,t) € V2. We call©(s, t) thelink qual-
and K for the phenomena of interest. In general, this is a difficult ity process This process can be learned the following way. In
problem — we want to estimate these infinite objects from a finite our initial deployment, we let each sensor broadcast a message
amount of sample data. Consequently, often strongly limiting as- once every epoch, containing its identification number. Each sen-
sumptions are made: It is assumed that the covariance of any twosor also records, from which other sensors it has received mes-
random variables is only a function of their distance (isotropy), and sages this epoch. This leads to a collection of samples of the form
independent of their location (stationarity). A kernel function often (s, x, s;x, 0k (ss, s;))i.5,k, Wherei, j range over the deployed sen-
used is the Gaussian kernel sors.k ranges over the epochs of data collection, &n@;, s, ) is 1
s — ]2 if nodes received the message from nodi& epochk, and0 other-
K(s,t) = exp (—T) . (7 wise. We will interpre®y (s;, s;) as samples from the link quality

proces$ (-, -). Using these samples, we want to compute predic-
These isotropy and stationarity assumptions lead to similar prob- tive distributions similar to those described in Egs. (5) and (6). Un-
lems as encountered in the approach using geometric sensing refortunately, in the classification setting, the predictive distributions
gions, as spatial inhomogeneities such as walls, windows, reflec-cannot be computed in closed form anymore, but one can resort to
tions etc. are not taken into account. These inhomogeneities areapproximate techniques [4]. Using these techniques, we infer the
however dominantly encountered in real data sets, as indicated inlink qualities by modeling the underlying GF (s, ¢). Intuitively,
Fig. 2(a). the binary observations will be converted to imaginary observations
In this paper, we dmot make these limiting assumptions. We use of W (s, t), such thaB(s,t) = f(W (s, t)) will correspond to the
an approach to estimate nonstationarity proposed in [17]. Their empirical transmission probabilities between locatisasidt. We
method estimates several stationary GPs with kernel functions asnow can use Egs. (5) and (6) to compute the predictive distribu-
in (7), each providing a local description of the nonstationary procesgions W (s, t) for any pair of locations(s, t) € V2. Applying the



Input : LocationsC C V less the addition of a new sensor helps us. This intuition is formal-

Output: Greedy sequenag, g, - . ., gic|, Ci = {g1,. .., 9i} ized by the concept cfubmodularity A set functionF" defined on
begin subsets oV is calledsubmodulayif
Co — 0;

F(AU{s}) - F(A) = F(BU{s}) — F(B), ©)

forall A C B C V ands € V-13. The functionF' is monotonic

if F'(A) < F(B) forall A C B C V. With any such set function

F, we can associate the following greedy algorithm: Start with the
empty set, and at each iteration add to the currentiSdte element

s which maximizes thgreedy improvemerdt (A’ U{s}) — F(A"),

and continue untild’ has the specified size éfelements. Perhaps
surprisingly, if A¢ is the set selected by the greedy algorithm (with
sigmoid transform will then result in a probability distribution over | A;|=Fk) and if F is monotonic submodular witi'(¢) =0, then
transmission success probabilities. In our implementation, instead F(A¢) > (1—1/e) max 4. 4=k F(A), i.e., Ag is at most a con-

of parameterizingV (s, t) by pairs of coordinates, we use the para- stant factor(1 — 1/e) worse than the optimal solution [16]. In [9],
metrizationW (¢ — s, s). The first component of this parametriza-  we prove that our mutual information criterion is submodular and
tion is the displacement the successful or unsuccessful message hagpproximatelymonotonic: For any > 0, if we choose the dis-
traveled, and the second component is the actual set of physical cocretization fine enough (polynomially-large iri<), then the solu-
ordinates of the transmitting sensor. This parametrization tends totion obtained by the greedy algorithm is at mast-1/e)OPT —«.
exhibit better generalization behavior, since the distance to the re- Alg. 1 presents the greedy algorithm for mutual information; for
ceiver (component 1) is the dominating feature, when compared to details we refer the reader to [9]. However, this result only holds
the spatial variation in link quality. Fig. 1(c) shows an example of \when we do not take communication cost into account, and does
the predicted link qualities using a GP for our indoors deployment, not generalize to the covering and maximization problems (1) and
Fig. 1(d) shows the variance in this estimate. (2) we study in this paper. Indeed, since the greedy algorithm does
What is left to do is to compute the expected number of retrans- not take distances into account, it would prefer to place two highly
missions, as described in formula (4). Assuming the predictive informative sensors very far apart (in order to achieve the quota
distribution for W (s, ¢) is normal with mear: and variancer”, Q), whereas a cheaper solution may select three sensors which are
we computef iy N (@3 1, 0%)dz = 1 + exp(—p + o?), where slightly less informative (still satisfying the quota), but which are
N (5 it,0?) is the normal density with meam and variances?. closer together. In Sec. 7 we show that even a modified version of
Hence we have a closed form solution for this integrakrif= 0, the greedy algorithm naturally taking into account communication
we simply retain that the expected number of retransmissions is COSt can provide very poor solutions.

the inverse of the transmission success probabilityr?lis very In addition tosubmodularity the mutual information criterion em-
large however, the expected number of retransmission drastically pirically (c.f., Fig. 4(h)) exhibits another importatdcality prop-
increases. This implies that even if we predict the transmission erty: Sensors which are very far apart are approximately indepen-
success probability to be reasonably high, €g3, if we do not dent. This implies that if we consider placing a subset of sen-
have enough samples to back up this prediction and hence our pre-sors.A; in one area of the building, ands in another area, then
dictive variances? is very large, we necessarily have to expectthe F(A1 U Az) = F(A1) 4+ F(Az). Here, we will abstract out this
worst for the number of retransmissions. So, using this GP model, property to assume that there are constants0 and0 < v < 1,

we may determine that it is better to select a link with success prob- such that for any subsets of nodds and.4> which are at least
ability 1/3, about which we are very certain, to a link with a higher  distancer apart, (A1 U As) > F(A1) + vF(Az2). Such a sub-
success probability, but about which we are very uncertain. En- modular functionF will be called(r, v)-local.

abling this tradeoff is a great strength of using GPs for predicting
communication costs!

forj=1to|C|do
g; + argmax F(Cj—1 U{g}); Cj < Cj—1Ugj;
gGC{j_l

end
end

Algorithm 1: Greedy algorithm for maximizing mutual infor-
mation.

~
~

6. APPROXIMATION ALGORITHM

In this Section, we propose an efficient approximation algorithm
for selecting Padded Sensor Placements at Informative and cost-

5. PROBLEM STRUCTURE IN SENSOR Effective Locations§SPIEL. Our algorithm exploits problem struc-
PLACEMENT OPTIMIZATION ture viasubmodularityand Ibcality, both properties described in

We now address the covering and maximization problems describedSec. 5. Before presenting our results and performance guarantees,
in Sec. 2. We will consider a discretization of the space into fi- here is an overview of our algorithm.

nitely many pointsV, e.g., points lying on a grid. For each pair
of locations inV, we define the edge cost as the expected number

of retransmissions required to send a message between these nodes

(since link qualities are asymmetric, we use the worse direction as
the cost). The set of edges that have finite cost is denotefl. by
The challenge in solving the optimization problems (1) and (2) is
that the search space—the possible suhdets V—is exponen-

tial; more concretely, the problem is easily seen taN@-hard as

a corollary to the hardness of the unconstrained optimization prob-
lem [9, 13]. Given this, we seek an efficient approximation algo-
rithm with strong performance guarantees. In Sec. 6, we present
such an algorithm. The key to finding good approximate solutions
is understanding and exploiting problem structure.

Intuitively, the sensor placement problem satisfies the following di-
minishing returns property: The more sensors already placed, the

1. We randomly select a decomposition of the possible loca-
tionsV into smallclusters using Alg. 24:f., Fig. 3(a), Sec. 6,
[10]). Nodes close to the “boundary” of their clusters are
stripped away and hence the remaining clusters are “well-
separated”. (We prove that not too many nodes are stripped
away). The well-separatedness and the locality proper#y of
ensure the clusters are approximately independent, and hence
very informative. Since the clusters are small, we are not
concerned about communication cost within the clusters.

. Use the greedy algorithm (Alg. 1) within each clustay get
an ordery;.1, gi,2, - - - gi,n; ON then; nodes in clustei. Cre-
ate a chain for this cluster by connecting the vertices in this
order, with suitably chosen costs for each e@ge, gi,j+1),
as in Fig. 3(b). The submodularity &f ensures that the first
k nodes in this chain are almost as informative as the best
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Figure 3: lllustration of our algorithm: (a) presents a padded decomposition into four clusters; (b) displays the chain in the modular
approximation graph associated with cluster 1; (c) shows the modular approximation graph with chains induced by greedy algorithm
and the complete “core”; (d) the solution of the Quota-MST problem on the modular approximation graph; and (e) is the final
solution after expanding the Quota-MST edges representing shortest paths.

subset ofk nodes in the cluster [9]. Input: Graph(V, E), shortest path distanek-, -), 7 > 0,
3. Create a “modular approximation grapfi” from G by tak- a > 64dim(V, E)

ing all these chains, and creating a fully connected graph on | output: («, r)-padded decompositia = {C., : u € U}

g1.1,92.1,---,9m,1, the first nodes of each chain. The edge begin

costs(gi,1,g,1) correspond to the shortest path distances repeat

betweery;,; andg;: 1, as in Fig. 3(c). C«—0;r' — < U — {arandom element in};

4. We now need to decide how to distribute the desired quota to while JveV : Yue U d(u,v) > 1’ doUd —UU{v};

the clusters. Hence, we approximately solve the Quota-MST 7 « random permutation oif;

problem (for the covering version) or the Budget-MST prob- R — uniform at random ir{r’, 2r”;

lem (for the maximization problem) o [7, 12] (Fig. 3(d)). foreachu € U according tor do

5. Expand the chosen edgesgSfin terms of the shortest paths Cu — {v €V :d(u,v) <R, andvu’ €

they represent i, as in Fig. 3(e). U appearing earlier thatin 7, d(u’,v) > R};
Supposer = | V| is the number of nodes i, and.A™ denotes the end
optimal set (for the covering or maximization problem), with cost until at least! nodes-padded
¢*. Finally, letdim(V, E') be thedoubling dimensiomf the data, end
which is constant for many graphs (and for costs that can be em- . . ' . )
bedded in low-dimensional spaces), an@ifogn) for arbitrary Q(l)%%“thm 2: Algorithm for computing padded decomposi-
graphs €.f.,[10]). We prove the following guarantee: '

THEOREM 1. Given a graphg = (V, E), and an(r, )-local Padded decompositions To exploit the locality property, we would
monotone submodular functidn, we can find a treg” with cost like to decompose our space into “well-separated” clusters; loosely,
O(rdim(V,E)) x £*, spanning a setl with F/(4) > Q(v) x F(A"). anr-padded decomposition is a way to do this so that most vertices
The algorithm is randomized and runs in polynomial-time. of V lie in clustersC; that are at least apart. Intuitively,padded

decompositionsllow us to split the original placement problem
into approximately independent placement problems, one for each
clusterC;. This padding and the locality property of the objective
function F' guarantee that, if we compute selectioss,. .., A,
for each of them clusters separately, then it holds thaA4; U

- UAn) 2 7Y, F(A:),i.e., we only lose a constant factor. An
example is presented in Fig. 3(a).
If we put all nodes into a single cluster, we obtain a padded decom-
position that is not very useful. To exploit our locality property, we
want clusters of size abouthat are at leastapart. It is difficult to
Iwhile the actual guarantee of our algorithm holds in expectation, obtain separated clusters of size exactljput padded decomposi-
running the algorithm a small (polynomial) number of times will tions exist for arbitrary graphs for cluster sizes a constalarger,
lead to appropriate solutions with arbitrarily high probability.

In other words, Theorem 1 shows that we can solve the covering
and maximization problems (1) and (2) to provide a sensor place-
ment for which the communication cost is at most a small factor

(at worst logarithmic) larger, and for which the sensing quality is at

most a constant factor worse than the optimal solufiofhe proof

can be found in our technical report [14]. In the rest of this section,

we flesh out the details of the algorithm, giving more technical in-

sight and intuition about the performance of our approach.




wherea is Q(dim(V, E)) [10]. We want small clusters, since we
can then ignore communication cost within each cluster.
Formally, an(«, r)-padded decomposition is a probability distri-
bution over partitions ofy into clustersCy,...,Cn, such that:

(i) Every clustelC; in the partition is guaranteed to have bounded
diameter, i.e.diam(C;) < ar.
(i) Eachnodes € V isr-padded in the partition with probability
at leastp. (A nodes is r-paddedif all nodest at distance at
mostr from s are contained in the same clustersgs
The parametep can be chosen as a constant (in our implementa-
tion, p = %). In this paper, we use the term padded decomposition
to refer both to the distribution, as well as samples from the dis-
tribution, which can be obtained efficiently using Alg. 2 [10]. In
pSPIEL for a fixed value of the locality parameterwe gradually
increasex, stopping when we achieve a partition, in which at least
half the nodes are-padded. This rejection sampling is the only

original graphG. By property (i) of the padded decomposition,
cust(Cix) < a r k. By associating these rewards with each
node, we define anodularset functionF’ on G’, such that for a
setB of nodes inG’, its valueF’(B) is the sum of the rewards of
all elements in3. Fig. 3(b) presents an example of a chain asso-
ciated with cluster 1 in Fig. 3(a). Additionally, we connect every
pair of node<’; 1,C;,1 with an edge with cost being the shortest
path distance betweegy,; andg;,: in G. This fully connected
subgraph is called theore of G’. Fig. 3(c) presents the modular
approximation graph associated with the padded decomposition of
Fig. 3(a).

Solving the covering and maximization problems inG’. The
modular approximation grapfi’ reduces the problem of optimiz-
ing a submodular set function i@ to one of optimizing anod-
ular set functionF”’ (where the value of a set is the sum of re-
wards of its elements) i’ to minimize communication costs.

randomized part of our algorithm, and, in expectation, the number This is a well studied problem, and constant factor approxima-

of required samples is polynomial.

Our algorithm strips away nodes that are ngtadded, suggesting a
risk of missing informative locations. The following Lemma proves
that we will not lose significant information in expectation.

LEMMA 2. Consider a submodular functiofi(-) on a ground
setV, asetB C V, and a probability distribution over subsetsof
B with the property that, for some constantve havePr [v € A] >
pforall v € B. ThenE[F(A)] > pF(B). O

The proof of this Lemma appears in [14]. Lt be the optimal
solution for the covering or maximization problem, and A&t de-
note a subset of nodes 4™ that arer-padded. Lemma 2 proves
that, in expectation, the information provided By is at most a
constant factop worse thanA*. Since the cost of collecting data
from A7 is no larger than that ofd*, this lemma shows that our
padded decomposition preserves near-optimal solutions.

The greedy algorithm. After having sampled a padded decompo-
sition, we run the greedy algorithm as presented in Alg. 1 on the
r-padded nodes in each clustgr with & set ton;, the number of
padded elements in clustéy. Let us label the nodes @s1, gi,2,

.+1 gi,, in the order they are chosen by the greedy algorithm, and
letCi; = {gi1,-..,9:;} denote the greedy set after iteratipn
From [9] we know that each s€} ; is at most a factofl — 1/e)
worse than the optimal set gfpadded elements in that cluster. Fur-
thermore, from(r, «)-locality and using the fact that the nodes are
r-padded, we can prove that

F(Cijy U+ UCrm ) 2Dy F(Crogi) >y (1-2) Y0, F(Cri 5,

for any collection of indicegy, ..., jm, whereC;, ;, denotes the
optimal selection ofjx nodes within clustek.

The modular approximation graph G’. In step 3),pSPIELcre-
ates the auxiliarynodular approximation grapMAG) G’ from

G. Intuitively, this MAG will approximate7, such that running the
Quota-MST algorithm on it will decide how many nodes should
be picked from each cluster. The nodegjfare the greedy sets
Ci,;. The greedy sets for clustérare arranged in a chain with
edgee;,; connectingC; ; andC; ;41 for everys andj. For a set
of nodesB, if carsr(B) is the cost of a minimum spanning tree
(MST) connecting the nodes by their shortest paths, the weight
of e;; in G is the difference in costs of the MSTs 6f ; and
Ci,j+1 (or 0 if this difference becomes negative), i.e(g; ;) =
max [carsT(Cij+1) — emst(Ci,j), 0] . We also associate a “re-
ward”reward(C; ;) = F(C; ;) — F(C;,;—1) with each node, where

F(Cio) £ 0. Note that, by telescopic sum, the total reward of the
first k elements in chainis F'(C; x ), and the total cost of the edges
connecting them isxss7(C; 1), which is at most 2 times the the
cost of a minimum Steiner tree connecting the nodes jinin the

tion algorithms have been found for the covering and maximization
problems. The (rootedpuota-MSTproblem asks for a minimum
weight tree7 (with a specified root), in which the sum of rewards
exceeds the specified quota. ConverselyBhdget-MSTproblem
desires a tree of maximum reward, subject to the constraint that the
sum of edge costs is bounded by a budget. The best known approx-
imation factors for these problemsdgor rooted Quota-MST [7],
and3 + ¢ (for anye > 0) for unrooted Budget-MST [15]. We can
use these algorithms to get an approximate solution for the cover-
ing and maximization problems i@'. From Sec. 6, we know that

it suffices to decide which chains to connect, and how deep to de-
scend into each chain; any such choice will give a subtrgg.ofo

find this tree, we consider al}; ; for eachi as possible roots, and
choose the best tree as an approximate solution. (For the Budget-
MST problem, we only have an unrooted algorithm, but we can use
the structure of our modular approximation graph to get an approx-
imately optimal solution.) We omit all details due to space limita-
tions. Fig. 3(d) illustrates such a Quota-MST solution.

Transferring the solution from G’ back to G. The Quota- or
Budget-MST algorithms select a tré€ in G’, which is at most

a constant factor worse than the optimal such tree. We use this so-
lution 7" obtained forG’ to select a tred C G: For every cluster

i, if C;; € T' we markg; 1, ..., gi; in G. We then selecT

to be an approximately optimal Steiner tree connecting all marked
nodes inG, obtained, e.g., by computing an MST for the fully con-
nected graph over all marked vertices, where the cost of an edge
betweens andt is the shortest path distance between these nodes
in G. This tree7 is the approximate solution promised in Theo-
rem 1. (Fig. 3(e) presents the expansion of the Quota-MST from
Fig. 3(d).)

Additional implementation details. pSPIELrelies heavily on the
monotonic submodularity and locality assumptions. In practice,
since we may not know the constantand-y, we run the algorithm
multiple times with different choice for. Since the algorithm is
randomized, we repeat it several times to achieve a good solution
with high probability. Finally, since we do not know, we can-

not directly specify the desired quota when solving the covering
problem. To alleviate all these intricacies, we use the following
strategy to select a good placement: For a fixed number of itera-
tions, randomly sample anbetweerD and the diameter @f. Also
sample a quot&) between) and Qmax, the maximum submodu-

lar function value achieved by the unconstrained greedy algorithm.
RunpSPIELwith these parametersand @, and record the actual
placement, as well as the communication cost and sensing quality
achieved by the proposed placement. Afieiterations, these val-
ues result in a cost-benefit curve, which can be used to identify a
good cost-benefit tradeoff as done in Sec. 7.
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the light data. (e) compares trade-off curves for a small subset of the temperature data. (f) shows tradeoff curves for the temperature
GPs on a 10x10 grid. (g) compares tradeoffs for precipitation data from 167 weather stations. (h) compares the locality parameter
and the lossy incurred by the modular approximation for the temperature GPs.

7. EXPERIMENTS Fig. 4(b) presents the results. Interestingly, the proposed placement
In order to evaluate our method, we computed sensor placements(PS19) drastically reduces the prediction error by al50dt. This

for three real-world problems: Indoor illumination measurement, reduction can be explained by the fact that there are two compo-
the temperature prediction task as described in our running exam-nents in lighting: natural and artificial. Our baseline deployment

ple, and the prediction of precipitation in the United States’ Pacific Placed sensors spread throughout the environment, and in many
Northwest. intuitive locations near the windows. On the other hap@PIEL

decided not to explore the large western area, a part of the lab that

System implementation We developed a complete system imple- was not pgcupied_ during thg night, and thus had little fluctuation
mentation of our sensor placement approach, based on Tmote SkyVith artificial lighting. Focusing on the eastern pp&PIELwas
motes. The data collection from the pilot deployment is based on able to make sufficiently good natural light predictions through-

the TinyOS SurgeTelos application, which we extended to collect out the lab, and better focus of the sources of variation in artificial
link quality information. Once per epoch, every sensor sends out light. We repeated the evaluation for a 12 motes subsample (pS12),

a broadcast message containing its unique identifier. Upon receipt®'SC Proposed bpSPIEL which still provides better prediction

of these messages, every sensor will compile a bitstring, indicating than the manugl placement of 20 nodes (M20), and S|gn|f|cantly
from which neighbor it has heard in the current epoch. This trans- [OWer communication cost. We also compared the predicted com-
mission log information will then be transmitted, along with the munication cost using the GPs W'th the measured communication
current sensor readings, via multi-hop routing to the base station. €St Fig- 4(b) shows that the prediction matches well to the mea-

After enough data has been collected, we learn GP models for sensSUrement. Figs. 4(c) and 4(d) show tipe8PIEL outperforms the
ing quality and communication cost, which are subsequently used Gréedy heuristic explained below, both in the sensing quality and
by the pSPIELalgorithm. Our implementation @fSPIELuses a communication cost tradeoff and in predictive RMS error.
heuristically improved approximateMST algorithm as described  Indoor temperature measurements In our second set of experi-
in [12]. UsingpSPIEL we generate multiple placements and plot ments, we used an existing deployment.(Fig. 1(a)) of 52 wire-
them in a trade-off curve as described in Sec. 6. We then identify an less sensor motes to learn a model for predicting temperature and
appropriate trade-off by selecting good placements from this trade- communication cost in a building. After learning the GP models
off curve. from five days of data, we usgaSPIELto propose improved sen-

sor placements. We comparp8PIELto two heuristics, and—for
Proof-of-concept study As a proof-of-concept experiment, we small problems—uwith thg optimal algorithm Whi.Ch exhaugtively
deployed a network of 46 Tmote Sky motes in the Intelligent Work- Searches through all possible deployments. The first heu@tedy-
place at CMU. As a baseline deployment, we selected 20 locations Connect runs the unconstrained greedy algorithm (Alg. 1), and
(M20) that seemed to capture the overall variation in light inten- then connects the selected sensors using a Steiner tree approxima-
sity. After collecting the total solar radiation data for 20 hours, we tion. The second heuristiQistance-weighted Greedis inspired
learned GP models, and useSIPIELto propose a placement of 19 by an algorithm that provides near-optimal solutions to the Quota-
motes (pS19). Fig. 4(a) shows the 20 and 19 motes deployments.MST problem [1]. Th|§ heurlstlc initially startg with all nodes in
After deploying the competing placements, we collected data for 6 Separate clusters, and iteratively merges — using the shortest path —
hours starting at 12 PM and compared the prediction accuracy for clusters maximizing the following greedy criterion:
all placements, on validation data from 41 evenly distributed motes.



gain(Cy,Cs) = mmielﬂ(F_(Cl UCo) — F(Ci)). rithm provides strong theoretical performance guarantees. We built

dist(C1,C2) a complete implementation on Tmote Sky motes and extensively
evaluated our approach on real-world placement problems. Our
empirical evaluation shows thpSPIELsignificantly outperforms
existing methods.

The intuition for this greedy rule is that it tries to maximize the
benefit-cost ratio for merging two clusters. Since it works near-
optimally in the modular case, we would hope it performs well in
the submodular case also. The algorithm stops after sufficiently Acknowledgements We would like to thank Adrian Perrig for
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