Northwestern University

Department of Electrical and Computer Engineering

ECE 428: Information Theory

Spring 2004

Problem Set 8

Date issued: May 25, 2004 Date Due: June 3, 2004

Reading Assignment: Chapter 10

Do the following problems:

1. Problem 10.1 in C&T. Justify the steps leading to (10.142), (10.143), and (10.144). Justify (10.143) in part by showing the more general result, that for any function f(a,b),

 $\min_{a} \max_{b} f(a,b) \ge \max_{b} \min_{a} f(a,b).$

- **2.** Problem 10.3 in C&T.
- **3.** Problem 10.4 in C&T.
- 4. Enough Bandwidth: Let C_{∞} denote the capacity of an infinite bandwidth power-limited additive white Gaussian noise channel. Find the bandwidth W_{95} such that the bandwidth constraint reduces the capacity to $0.95 C_{\infty}$. The *spectral efficiency* of a bandlimited channel is the rate in bits per second per hertz. Numerically, find the spectral efficiency of a system using the above bandwidth?

Discuss whether high or low spectral efficiency is reasonable from the perspective of a communication system designer.

- 5. Consider a set of *N* independent, discrete-time white Gaussian noise channels that can be used in parallel. The noise variance for the *n*th channel is given by $\sigma_n^2 = n^2$ for each *n*. The input signal is constrained by the condition $\sum_{i=1}^{N} P_i / n \le 6$, where P_i represents the power used on the *n*th channel.
 - a. For N=2, what is the capacity of the set of parallel channels. (*Hint: if you set this up correctly, you should not have to do any complicated calculations.*)
 - b. Redo part (a) for $N = \infty$.