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In Lecture 1, we defined the following basic information measures:

• Relative entropy:

D(p||q) =
∑

x

p(x) log
p(x)
q(x)

= E
(

log
p(X)
q(X)

)
where X ∼ p(x).

• Mutual information:
I(X; Y ) = D(p(x, y)||p(x)p(y))

• Entropy:

H(X) = I(X; X)

= E
(

log
1

p(X)

)
.

In Lecture 2, we showed several key properties of these information measures. These
followed from using properties of convex functions. The following notes provide some addi-
tional detail about convex functions.

Definition: A real-valued function f is convex over an interval [a, b] if and only if for
all x1, x2 ∈ [a, b] and all α ∈ [0, 1]

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)

The right-hand side of this equation is a point on the line-segment connecting f(x1)
with f(x2); thus this definition imples that this line-segment lies above the function. If f

is twice differentiable then the above definition is equivalent to requiring that d2

dx2 f(x) ≥ 0
for all x ∈ [a, b] (see Theorem 2.6.1 in the text). If for any α ∈ (a, b), the above inequality
is strict, then f is said to be strictly convex.

Definition: f is (strictly) concave over an interval [a, b] if −f is (strictly) convex.

Notice that a linear function will be both convex and concave (but not strictly convex
or strictly concave).

Some useful properties for convex functions are:

1. If f and g are both convex on [a, b] then so is αf + βg for any α ≥ 0 and β ≥ 0.
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2. If f is convex [a, b] and g is linear then f(g(x)) is convex.

3. If f and g are both convex on [a, b] then so is max{f(x), g(x)}.
4. If f is convex over [a,b] and differentiable at x ∈ [a, b], then for all y ∈ [a, b], f(y) ≥

f(x) + f ′(x)(y − x).

You may want to try proving these using the above definitions. A useful bound that
follows from the last property is that log(x) ≤ x − 1 for all x ≥ 0 (with equality only at
x = 1).

These definitions and properties extend naturally to multi-variable functions, e.g. let
x = (x1, . . . , xn) denote a vector in Rn, then a real-valued function f(x) is convex over the
set X = {x = (x1, . . . , xn) : xi ∈ [ai, bi], i = 1, . . . , n} if for all x,y ∈ X , and all α ∈ [0, 1],

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y).

The definition of convexity can also be extended to functions defined on non-retangular
sets, Y; the key property needed is that the set contains the line segment connecting any
two points in the set; such sets are also called convex. In other words, Y is a convex set if
and only if for all y1,y2 ∈ Y, and all α ∈ [0, 1] , then αy1 + (1− α)y2 ∈ Y.

Given a convex function f over a convex set X , then the set of points

{(x, y) : y ≥ f(x),x ∈ X}
will also be a convex set (this set is called the epigraph of the function).

A key property of convex functions is Jensen’s inequality:

Jensen’s inequality: Let X be a random variable and f a convex function. Then

E[f(X)] ≥ f(E[X]).

Furthermore, if f is strictly convex, then equality implies X = E[X] with probability 1.

If X is a binary RV, inequality follows from the definition of convexity. For a general
discrete RV, the inequality can be proved by induction on number of mass points (see text).

We give an alternate proof, assuming f is differentiable.

Proof: If f is differentiable then using property 4, above we have that for all x, y

f(x) ≥ f(y) + f ′(y)(x− y).

Taking expectations with respect of x we have

E[f(X)] ≥ f(y) + f ′(y)(E[X]− y).

Setting y = E[X], Jensen’s ineq. follows. ¥

Jensen’s inequality is still true for continuous valued random variables and also gener-
alizes directly to random vectors.
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