
U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX() PIPS No:5122937 artty:res (Kluwer BO v.2002/10/03)
c5122937.tex; 25/03/2003; 14:03; p. 1

Cluster Computing 6, 189–200, 2003
 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Distributed Multi-Storage Resource Architecture and
I/O Performance Prediction for Scientific Computing

X. SHEN ∗, A. CHOUDHARY, C. MATARAZZO, and P. SINHA
Center for Parallel and Distributed Computing, Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA

Abstract. I/O intensive applications have posed great challenges to computational scientists. A major problem of these applications is that
users have to sacrifice performance requirements in order to satisfy storage capacity requirements in a conventional computing environment.
Further performance improvement is impeded by the physical nature of these storage media even when state-of-the-art I/O optimizations are
employed.

In this paper, we present a distributed multi-storage resource architecture, which can satisfy both performance and capacity requirements
by employing multiple storage resources. Compared to a traditional single storage resource architecture, our architecture provides a more
flexible and reliable computing environment. This architecture can bring new opportunities for high performance computing as well as inherit
state-of-the-art I/O optimization approaches that have already been developed. It provides application users with high-performance storage
access even when they do not have the availability of a single large local storage archive at their disposal. We also develop an Application
Programming Interface (API) that provides transparent management and access to various storage resources in our computing environment.
Since I/O usually dominates the performance in I/O intensive applications, we establish an I/O performance prediction mechanism which
consists of a performance database and a prediction algorithm to help users better evaluate and schedule their applications. A tool is also
developed to help users automatically generate performance data stored in databases. The experiments show that our multi-storage resource
architecture is a promising platform for high performance distributed computing.

Keywords: multi-storage resource architecture, I/O performance prediction, data intensive computing

1. Introduction

Many large-scale scientific applications are data intensive:
they generate huge amounts of data, presenting a major prob-
lem for computational scientists [28]. In a traditional com-
puting environment, the compute resource is tightly coupled
with local file systems, i.e. using local disks as data storage.
As the rate that data is produced increases and the amount
significantly exceeds that of disk capacity, large-scale scien-
tific applications have to turn to other large storage resources.
These storage resources include tertiary storage systems such
as HPSS [12,18], UniTree [40] and large database systems
such as Oracle. With the shift from typical computing cen-
ters to a more distributed computing enviornment, these addi-
tional large storage resources may no longer be locally avail-
able. These storage archives, due to nature and complexity are
most likely available at a few large centers for remote access.
For example, the tertiary storage system (HPSS) we use is lo-
cated at San Diego Supercomputer Center (SDSC), while our
application is running at Argonne National Lab and North-
western University. Therefore, the compute resources and
storage resources may no longer be tightly coupled, rather,
they may be geographically distributed across wide area net-
works. In such a distributed environment, the I/O problem
becomes more serious: an I/O call in this case has become a
remote I/O access [16] across networks, thus the I/O cost is

∗ Corresponding author.
E-mail: xshen@ece.nwu.edu

many times higher than a local disk I/O cost (bear in mind that
I/O access speed already lags far behind memory access even
in a local computing environment). In addition, the network
may bring more issues such as reliability, quality of service,
security and so on in a remote I/O access.

A major concern of I/O in a distributed environment is per-
formance. I/O (remote I/O) evaluation and optimizations are
more important and urgent than ever in such environments.
Both traditional I/O optimizations and new I/O techniques
should be employed to address this problem. We have built
a run-time library (SRB-OL) [26] that provides various state-
of-the-art optimizations for tertiary storage access (HPSS).
Although these optimizations can significantly improve per-
formance compared to naive approaches, further improve-
ment is impeded by the physical nature of storage media. For
example, a tape system such as HPSS requires a minimum
of 20 to 40 seconds to be ready to move the data and the data
transfer rate is very slow compared to disks. I/O optimizations
such as collective I/O, data sieving and so on can not elimi-
nate this overhead when data resides on tapes. Aggressive
prefetch or prestage may partially solve this problem by over-
lapping I/O access and computation, but they may result in a
significantly complex I/O system and force the user to specify
more precise hints to the system, otherwise a ‘false’ prefetch
or prestage may actually hurt performance. In general, the
remote large storage archival systems suffer from large data
access latency, while, on the other hand, the local fast stor-
age systems suffer from limited storage capacity. So the users
have to satisfy the capacity requirement at the loss of per-

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX() PIPS No:5122937 artty:res (Kluwer BO v.2002/10/03)
c5122937.tex; 25/03/2003; 14:03; p. 2

190 SHEN ET AL.

formance. We think this dilemma is rooted in the traditional
single storage resource architecture. In this architecture, the
application has only one storage medium available for storing
the user’s data. The performance improvement would saturate
even if many state-of-the-art optimizations have been applied.
Note that a scientific simulation here not only concerns the ap-
plication that generates data, it also includes ‘post’ process-
ing of these datasets, such as data analysis and visualization.
Thus performance here means an overall performance for all
of these processes.

In this paper, a multi-storage resource architecture, a
promising approach to solve this problem is presented. In our
architecture, an application can be associated with multiple
storage resources that could be heterogeneously distributed
over networks. These storage resources could include local
disks, local databases, remote disks, remote tape systems, re-
mote databases and so on. In short, any kind of storage media
can be added to this architecture. The advantages of employ-
ing multiple resources are three-fold:

• First, it increases the logical storage capacity of the sys-
tem. The total available storage capacity can be signifi-
cantly increased by adding as many storage media to the
system as possible.

• Second, a multi-storage resource system provides a more
flexible and reliable computing environment. For exam-
ple, failure of one storage component may not impede
the computation because other storage options are avail-
able. Often the remote large storage system, especially
one in production, is shutdown for system failure or main-
tenance, so that the experiment cannot be performed in a
single storage resource architecture. A multi-storage re-
source system, however, can help the user avoid relying
on one storage resource for computing.

• Finally and most importantly as far as performance is con-
cerned, a multi-storage resource architecture provides new
opportunities for further performance improvements for
scientific simulations. With multiple storage resources
coupled with the simulation, the application can specula-
tively store the datasets to the ‘best’ storage medium which
is most favorable for the desired post-processing, such as
data analysis and visualization. For example, if the user
wants to carry out visualization on a specific dataset just
after simulation generates it, she can suggest that the sys-
tem dump this dataset locally (if it does not exceed local
storage capacity), where visualization tools are installed
and all other unused datasets are sent to the remote large
storage system for permanent archival. So the user’s vi-
sualization tools can directly read data from local disks
rather than going all the way to the remote single stor-
age resource. In general, each generated dataset has its
purpose for usage and the multi-storage resource architec-
ture allows this purpose information to be exploited for
improved performance by storing it on a suitable storage
medium. In short, this architecture can combine the ca-
pacity advantage of remote large storage systems and the

performance advantage of local small storage system for
best usage.

To make use of this multi-storage resource architecture, an
effective user interface is required. This interface should be
easy-to-use and not require that the user change her program-
ming practices. In addition to the interface issues, this paper
addresses I/O performance prediction. A large volume of in-
formation is available in the literature on performance predic-
tion for computing resources [29], but few studies discuss I/O
performance prediction. I/O usually dominates performance
in data intensive applications, so accurate I/O performance
prediction can greatly help the user evaluate and schedule her
applications. Embarking on these goals, our contributions in
this paper are summarized as follows:

1. Present a multi-storage resource architecture that provides
opportunities for further performance improvement and
better data manipulation of users’ applications.

2. Design and implement an API that provides transparent
access to diverse storage resources. Our design of this API
is scalable given that other storage media can be easily
added.

3. Provide run-time library (I/O optimization) for each kind
of storage resource. A storage resource has its own data
access characteristics and we provide state-of-the-art I/O
optimizations for each type of storage resource, thus ac-
cess to each kind of storage resource is optimized.

4. Establish an I/O performance prediction mechanism that
can accurately predict I/O performance across diverse stor-
age resources before the user actually carries out experi-
ments.

The remainder of the paper is organized as follows. In
section 2 we describe a data model that captures I/O char-
acteristics of most I/O intensive applications. We also intro-
duce our simulation environment that includes several appli-
cations and some tools. In section 3 the system architecture
of our multi-storage resource system is presented. We first
describe a logical view of this architecture, followed by the
physical environment of our experiments. In section 4 we
present the I/O performance predictor. First we introduce a
basic performance model and a tool that can help automat-
ically generate the performance database, then we describe
our I/O performance prediction algorithm. In section 5, we
show performance numbers for experiments performed in our
new architecture. The experiment results are also compared
to prediction results by our I/O performance predictor. In sec-
tion 6, the related work is presented. We conclude the paper
in section 7 and some future work is also discussed.

2. I/O model and introduction to applications

Figure 1(a) shows a typical I/O model for scientific applica-
tions. N represents the maximum number of iterations of the
application and M is the total number of datasets. The I/O

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX() PIPS No:5122937 artty:res (Kluwer BO v.2002/10/03)
c5122937.tex; 25/03/2003; 14:03; p. 3

MULTI-STORAGE RESOURCE ARCHITECTURE AND I/O PERFORMANCE PREDICTION 191

/* initialization */
N = max-num-of-iteration;
M = max-num-of-datasets;
for (j = 0, j < M ; j ++) {

freq(j) = I/O frequency of dataset (j);
}

/* main */
for (i = 0; i < N ; i ++) {

for (j = 0; j < M ; j ++) {
if ((i % freq(j)) == 0)

read/write dataset(j);
}

}

(a) (b)

Figure 1. I/O model (a) and data flow of applications in our simulation environment (b).

/* initialization */
N = max-num-of-iteration;
f1 = frequency of dumpping data for analysis;
f2 = frequency of dumpping data for visualization;
f3 = frequency of dumpping data for checkpoint;

/* main */
for (i = 0; i < N ; i ++) {

if ((i %f1) == 0) write datasets for analysis;
/* temp, press, rho, ux, uy, uz */

if ((i %f2) == 0) write datasets for visualization;
/* vr_ rho, vr_temp, vr_press, vr_em */

if ((i %f3) == 0) write datasets for checkpoint;
/* restart */

}

/* initialization */
N = max-num-of-iteration;
f1 = 1; /* frequency of read input dataset “indata” */;
f2 = 1; /* frequency of write image dataset “image” */;

/* main */
for (i = 0; i < N ; i ++) {

read input dataset “indata”;
generate image dataset “image”;
write image dataset “image”;

}

Figure 2. I/O model of Astro3D and Volren.

frequency of dataset(j) is given by freq(j). In the main loop,
dataset(j) will be either read from or written to for every
freq(j) iterations. The computing part, which is not shown
in the figure, may be interleaved with I/O operations. As the
number of iterations may be very large and/or each dataset
may be large, the total amount of data could be huge.

Figure 1(b) shows our simulation environment which in-
cludes several applications and tools. It is a representative of
typical scientific simulation environments.

The main application is an astrophysics application called
Astro3D or astro3d [21,38] henceforth. Astro3D is a code for
scalably parallel architectures to solve the equations of com-
pressible hydrodynamics for a gas in which the thermal con-
ductivity changes as a function of temperature. This code has
been developed to study the highly turbulent convective en-
velopes of stars like the sun, but simple modifications make it
suitable for a much wider class of problems in astrophysical
fluid dynamics. The algorithm consists of two components:
(a) a finite difference higher-order Godunov method for com-
pressible hydrodynamics, and (b) a Crank–Nicholson method
based on nonlinear multigrid method to treat the nonlinear
thermal diffusion operator. These are combined together us-

ing a time splitting formulation to solve the full set of equa-
tions. From a data flow point of view, Astro3D is a data
producer; it generates three kinds of datasets: one for data
analysis which include six variables (press, temp, rho, ux, uy
and uz); one for visualization which includes seven variables
(vr-scalar, vr-press, vr-rho, vr-temp, vr-mach, vr-ek and vr-
logrho); and one for checkpoint which includes six variables
(restart-press, restart-temp, restart-rho, restart-ux, restart-uy
and restart-uz). The user can specify on the command line the
dump frequency of each kind of dataset, total number of iter-
ations and problem size (3-dimensional) of datasets (figures 1
and 2).

The second application is a data analysis program. This
application is a data consumer in that it takes one of the
datasets generated by Astro3D (press, temp, rho, ux, uy or
uz) and calculates the difference between two consecutive
timesteps. This will show how a dataset changes as a simu-
lation progresses. The algorithm applied is Maximum Square
Error (MSE) between two consecutive timesteps. Other data
analysis programs can easily be substituted if desired.

The third application is a parallel volume rendering code
(called Volren henceforth). It generates a 2D image by pro-

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX() PIPS No:5122937 artty:res (Kluwer BO v.2002/10/03)
c5122937.tex; 25/03/2003; 14:03; p. 4

192 SHEN ET AL.

jection given a 3D input file. This application is both a data
consumer and data producer. It takes one of the datasets
(3-dimensional) generated by Astro3D (vr-scalar, vr-press,
vr-rho, vr-temp, vr-mach, vr-ek or vr-logrho) and then per-
forms a parallel volume rendering algorithm to generate a
2-dimensional image dataset for each iteration. This image
dataset is then dumped to a storage medium for later use (fig-
ure 2).

In addition, the two tools are an image viewer and an in-
teractive visualization tool such as VTK. They are both data
consumers. The image viewer reads two dimensional image
datasets generated by Volren and the interactive visualization
tool takes datasets directly from Astro3D figure 2.

In figure 1 we view this whole picture as a complete simu-
lation environment. The user performs experiments with As-
tro3D first, and after the simulation has completed, she may
carry out one or more of the post processings (data analysis,
volume rendering and interactive visualization) on the gener-
ated datasets. The performance improvement of one com-
ponent should not impede the improvement of other com-
ponents. Thus an overall performance improvement can be
achieved.

3. System architecture and experimental environment

3.1. Logic architecture of multi-storage resource system

In this section, we present our multi-storage resource archi-
tecture. A logical architecture of this environment is depicted
in figure 3. This architecture can be logically described with
five levels:

Physical Storage Resources At the bottom of this five-
layered architecture are various storage resources. These
resources could include local disks, local databases, re-
mote disks, remote databases, remote tape systems and
other storage components that actually hold the data.

Figure 3. Logic architecture of multi-storage resource system.

Native Storage Interface The layer residing above the stor-
age resources is the native storage interface. Each storage
resource has its own access interface provided by the ven-
dors of the storage systems. These interfaces to various
storage systems are well established and are developed by
the vendors. For example, the interface to a local data-
base can be an embedded C API which is provided by
the database vendor. The interface to local disks is usu-
ally a filesystem. To access remote disk and tape systems,
the storage resource broker, SRB, developed by San Diego
Supercomputer Center [REF] is a popular interface. Some
tape systems such as HPSS also provide their own APIs for
users. A few of the major concerns with these native inter-
faces are portability, ease-of-use and reliability etc. Few of
them have fully considered performance issues in a paral-
lel and distributed computing environment. In addition, it
is impossible for the application level users to change these
interfaces directly to take care of performance issues. Thus
this layer is performance-insensitive.

Run-time Library One methodology to address perfor-
mance problems of native storage interface is to build a
run-time library that resides above it. The only concern
of the libraray at this level is performance. It captures the
characteristics of user’s data access patterns and performs
an optimized data access method to the native storage in-
terface. For example, MPI-IO, which is built on top of
local file systems, takes advantage of collective I/O, data
sieving, asynchronous I/O and so on to gain performance
improvements. For remote disk and tape systems, our pre-
vious work SRB-OL [26] also employs other novel op-
timization approaches such as subfile, superfile, etc. as
well as those found in MPI-I/O. This layer is performance-
sensitive.

User API On top of the Run-time libraries is the Application
Programming Interface (API) layer. This API is used in
user applications to provide transparent access to various
storage resources and select appropriate I/O optimization
strategies and storage types.

User Application The top layer in our logical architecture
is user applications. The user develops her applications by
using our API and passes a high level hint to the API. This
hint is high level since it does not concern the low level de-
tails of storage resources and I/O optimization approaches:
it only describes how the user’s dataset will be partitioned
and accessed by parallel processors, how the dataset will
be used in the future, or the kind of storage systems the
user expects to send the datasets.

We can also think of the bottom two layers, storage re-
sources and native interfaces, as the physical level. They are
provided by commercial vendors and the user has no control
over them. The top layer can be viewed as the application
level. The two layers in the middle, user API and run-time
libraries can be thought of as the system level, which is pro-
vided by system developers like us. The purpose of this layer
is to mediate between the physical level and the application

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX() PIPS No:5122937 artty:res (Kluwer BO v.2002/10/03)
c5122937.tex; 25/03/2003; 14:03; p. 5

MULTI-STORAGE RESOURCE ARCHITECTURE AND I/O PERFORMANCE PREDICTION 193

level, and to optimize the raw access from application level to
physical level.

For example to clarify the use of this architecture, a user
would write her application using our API when she needs to
perform I/O. Our API would decide which storage resource
should be responsible for the data access. Then the optimized
I/O requests by the run-time library are actually performed
on the selected storage resources. Note that selecting target
storage resources is fine-grained: it can be as fine as a specific
dataset rather than the whole run. This means that different
datasets may be spread across different storage media even
within a single run. We will demonstrate in the subsequent
sections that this architecture is more flexible and scalable for
high performance distributed computing than a single storage
resource architecture.

3.2. Experimental environment

Figure 4 shows our overall experimental environment (includ-
ing I/O performance predictor and tools). The compute re-
source on which the applications run is an IBM SP2, which
is located at Argonne National Laboratory. Each node of the
SP-2 is a RS/6000 Model 390 processor with 256 megabytes
memory and has an I/O sub-system containing four 9 giga-
bytes SSA disks attached to it. The storage resources involved
in this environment are as follows:

Local Postgres Database This database is installed at
Northwestern University.1 This ‘small’ database is used
to store the meta-data of our system. The meta-data de-
scribes information about applications and users running
in the system, and information about each dataset and
its characteristics. These characteristics include the stor-
age resource type on which each dataset is stored or to
be stored, file path and name of each dataset, how each
dataset is partitioned among processors, how it is stored
(storage pattern) on storage systems and so on. The other
layers such as the API layer can use this information to

Figure 4. System architecture of multiple storage resource system and I/O
performance predictor.

locate each dataset that the user is interested in, and also
make an optimized I/O decision. This database also stores
performance-related data (section 4), so the I/O perfor-
mance predictor can consult this database to make perfor-
mance predictions. The native interface to the Postgres
database is an embedded C API provided by the database
vendor. As meta-data access is inexpensive, there is no
need to provide a run-time library on top of the native in-
terface, or other approaches to optimize meta-data access.

Local Disks Local disks are the most popular traditional
storage resource for saving a user’s data files. As scien-
tific computing often generates huge amounts of data that
may exceed the storage capacity of local disks, local disks
are only suitable for storing small data files. On the other
hand, local disk access is much faster than remote disk and
tape access. Our multi-storage resource system allows us
to take this opportunity for novel optimizations. The na-
tive interfaces to local disks is the general UNIX file sys-
tems, PIOFS and so on. On top of this interface is the
MPI-IO run-time library or D-OL that provides collective
I/O, data sieving, asynchronous I/O and other optimization
schemes. D-OL is a run-time library we ported to local
disks from our SRB-OL [26] work. Compared to MPI-
IO, D-OL performs slightly better for the write operation
than MPI-IO but slightly worse for the read operation. This
small performance difference does not matter and can be
ignored. We use D-OL in our experiments in this paper
only because it allows us to easily design a general perfor-
mance prediction algorithm for all storage media.

Remote Disks The remote disks in our environment are lo-
cated at the San Diego Supercomputer Center (SDSC).
Compared to local disks, remote disks have both larger
storage capacity and data access latency. We use SDSC’s
Storage Resource Broker (SRB)2 [2,3,30] as the native
interface to remote disks. The run-time optimization li-
brary, which is called SRB-OL, is presented in our previ-
ous work [26]. Besides optimization approaches that can
be found in MPI-IO, SRB-OL also provides optimization
schemes such as subfile, superfile and so on.

Remote Tapes The remote tape system we use in our envi-
ronment is the High Performance Storage System (HPSS)
[12]. Although HPSS can be configured as multiple hi-
erachies, we only use its tapes, i.e. only one level of a
hierachy, for simplicity. The remote tapes have very large
storage spaces and we assume they can hold any size of
data. But the cost to access tape-resident data is extremely
expensive. The native interface to HPSS could be SRB or
HPSS internal API. As we are not allowed to use HPSS’s
internal API at present,3 we also use SRB as the native in-
terface in our work. The SRB-OL run-time library is also
applied to HPSS.

In summary, we have identified four storage resources in
our system: one ‘small’ local database serves as a meta-data
repository; the other three resources: local disks, remote disks
and remote tapes are repositories for actual data files. In gen-
eral, the larger the storage capacity, the more expensive the

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX() PIPS No:5122937 artty:res (Kluwer BO v.2002/10/03)
c5122937.tex; 25/03/2003; 14:03; p. 6

194 SHEN ET AL.

Figure 5. A typical I/O flow. The execution starts with the initialization()
routine. The left side of the figure shows how the write operation progresses
and right side shows how the read operation progresses. The execution flow

is ended by the finalization() routine.

data access cost. Based on characteristics of these distrib-
uted multi-storage resources, a unique distributed computing
paradigm is identified: different datasets can be speculatively
dumped to different storage resources for different purposes
even within a single run of an application. For example, if
the user is going to carry out visualization on a dataset vr-
temp shortly after it is generated by Astro3D application, she
can provide this information when she performs the experi-
ment. Then this dataset will be written to a fast storage re-
source, such as local disks, which are ‘close’ to the visualiza-
tion tools, and all the other unused datasets are sent to other
slow storage media but with larger capacities for permanent
archiving Later on, the user can directly access this dataset
from the local disk which is the fastest storage medium in our
environment.

Figure 5 shows the I/O flow and main functions in our
API [27]. In order for the user to specify her hints, each
dataset is associated with a ‘location’ attribute. The user can
explicitly specify it as one of the following values:

• LOCALDISK suggests dataset be placed on local disks;

• REMOTEDISK suggests dataset be placed on remote
disks;

• REMOTETAPE suggests dataset be placed on remote
tapes;

• AUTO/DEFAULT leaves it to the system to decide. De-
fault is remote tapes;

• DISABLE suggests this dataset not be dumped because it
will not be used for this run.

The system is most effective if the user understands how
her datasets are going to be accessed in the future, so she can
easily specify these hints.

Before we show our performance numbers in this environ-
ment, we will present an I/O performance predictor, which
gives a quantitative view of the performance of various stor-
age resources used in our experiments.

4. I/O performance predictor

4.1. Performance model

As I/O cost is significant for many large-scale scientific appli-
cations, it is very useful if the user can estimate the I/O cost
before she actually carries out her experiments, enabling her
to make better arrangements of her experiments. Therefore,
I/O performance prediction is a very important planning tool
for the scientist. In our multi-storage resource system, an I/O
call may initiate a remote data access across networks, so in
general, the cost of a single I/O call in such an environment
T (s) can be broken down into time for communication setup
Tconn, time for file open Topen, time for file seek Tseek, time to
transfer data Tread/write(s), time to close file Tfileclose and time
to close the communication connection Tconnclose:

T (s) = Tconn + Topen + Tseek + Tread/write(s)

+ Tfileclose + Tconnclose, (1)

where s is the size of a single data transfer. For the local
filesystem, there is no communication setup, so Tconn = 0
and Tconnclose = 0. For other distributed resources, the com-
munication setup is a constant for each storage resource. In
addition, file open and file close are also constants. The file
seek time is also a constant for disk systems due to its ran-
dom access mechanism. Tread/write(s) is a function of data
size s. Therefore, the basis of our I/O performance prediction
is to construct a performance database that maintains all the
components in equation (1) for each storage resource, so the
performance predictor can search the database to obtain these
numbers to perform prediction algorithms. The main task is
to time Tread/write(s) for various data sizes on different storage
media. To efficiently obtain these numbers, we built a tool
called PTool that can automatically generate all these num-
bers. This program automatically measures read/write time
of various data sizes and stores them in the database directly.
Therefore, the user can easily set up her basic performance
prediction database in a single run. Figures 6, 7 and 8 show
read/write time for various data sizes and table 1 shows the
file open, file close times, etc. We recognize that the system
load effects our timing measurements and may impact the ac-
curacy of our predictions.

4.2. Performance prediction algorithm

Once the basic performance database is established, we can
design the prediction algorithm. Remember in our multi-
storage resource environment, the user’s request for I/O is at

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX() PIPS No:5122937 artty:res (Kluwer BO v.2002/10/03)
c5122937.tex; 25/03/2003; 14:03; p. 7

MULTI-STORAGE RESOURCE ARCHITECTURE AND I/O PERFORMANCE PREDICTION 195

(a) (b)

Figure 6. Read (a) and write (b) time on local disks.

(a) (b)

Figure 7. Read (a) and write (b) time on remote disks.

(a) (b)

Figure 8. Read (a) and write (b) time on remote tapes (HPSS).

Table 1
Timings for file open, close, etc.

Location Type Conn Fileopen Fileseek Fileclose Connclose

Local disk read 0 0.20 – 0.001 0
Local disk write 0 0.21 – 0.001 0
Remote disk read 0.44 0.42 0.40 0.63 0.0002
Remote disk write 0.44 0.42 – 0.83 0.0002
Remote tape read 0.81 6.17 – 0.46 0.0002
Remote tape write 0.81 6.17 – 0.42 0.0002

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX() PIPS No:5122937 artty:res (Kluwer BO v.2002/10/03)
c5122937.tex; 25/03/2003; 14:03; p. 8

196 SHEN ET AL.

a high-level in her application, i.e. the user specifies an access
pattern that includes how data is partitioned among proces-
sors, what kind of storage resource the user wants to be affil-
iated with for each dataset and other high level hints. This
access pattern is interpreted by our Application Program-
ming Interface (API) into a data structure understandable by
a lower-layer run-time library that can perform I/O optimiza-
tion for each storage resource. So for the performance predic-
tor, the main input parameters are data access pattern, what
storage resource is used and what kind of I/O optimization
is used, as well as I/O frequency for each dataset and the to-
tal number of iterations. The predictor then calculates the
number of ‘native’ I/O calls (through the native interface)
needed for the request and the data size (s) of each ‘native’
I/O unit according to how I/O will be performed at the phys-
ical level. Then by searching the performance database, the
predictor can calculate the overall estimated I/O time for each
dataset access. The following equation gives the prediction
algorithm:

Tprediction =
M∑

j=1

(
N/freq(j) + 1

)
n(j)tj (s). (2)

Where N , M and freq(j) are total number of iterations,
total number of datasets and I/O frequency of dataset(j), re-
spectively. n(j) is the number of ‘native’ I/O calls required
by dataset(j) given an access pattern and I/O optimization
approach. tj (s) is the unit I/O time searched from the per-
formance database according to unit data size s. The follow-
ing example will show how the algorithm works. Suppose
the user is going to generate only vr-temp (dataset(1)) and
vr-press (dataset(2)) in Astro3D for every 6 iterations and
the maximum iteration is 120. Vr-temp is written to local
disks and vr-press is dumped to remote disks. Each dataset
is 2M . So M = 2, N = 120 and freq(1) = freq(2) = 6.
When collective I/O is applied, it allows the user to issue
one single write for one dataset during each iteration. So
n(1) = n(2) = 1. By consulting the performance database
and according to equation (1), t (1) = 0.12 and t (2) = 8.47.
So the total time is

Tprediction =
M∑

j=1

(
N/freq(j) + 1

)
n(j)tj (s)

= (120/6 + 1) · 0.25

+ (120/6 + 1) · 8.47

= 2.59 + 177.98 = 180.57(s). (3)

Our experiment shows that the actual time is about 197.40
(figure 9) which is consistent with our prediction. One exam-
ple of using this performance prediction is that the user can
choose a better maximum run time parameter for her job. Our
application is running on Argonne’s SP2, which allows the
user to specify a maximum run time for her job. The larger
the maximum run time, the lower priority for scheduling. As
the competition for job scheduling is keen, the user always
wants to specify the maximum run time to be as small as pos-
sible. Our performance predictor can provide a lower bound

Figure 9. I/O time for Astro3D: (1) write all datasets to remote tapes;
(2) write temp to remote disks and all other datasets to remote tapes; (3) write
only temp to remote disks and press to remote disks; (4) write vr-temp to lo-
cal disks and all the other datasets to remote tapes; (5) write only vr-temp to

local disks and vr-press to remote disks.

for this parameter that might be very helpful for the user in
choosing a suitable maximum run time.

5. Experiments

In this section, we present various new opportunities that our
multi-storage resource architecture can provide for high per-
formance computing.

Our base application is Astro3D, a data producer. It gen-
erates a number of datasets for different purposes. A typi-
cal run-time parameter set is shown in table 2. This set of
parameters will generate a total of about 2.2G data. As the
user may carry out many such large scale experiments with
different parameters, the total amount of data size generated
could be huge. Therefore, in a single storage resource en-
vironment, the user has to choose a tape system as a stor-
age repository which is usually thought of as unlimited in
space. The total I/O time is shown in figure 9(1) if we write
all this data to tapes. Note that this time has already been
optimized by collective I/O. Without collective I/O, it would
be many times slower. Then suppose the user wants to per-
form data analysis (MSE) on dataset temp, then the total I/O
time is shown in figure 10(a). This is our base experiment
for comparison, which is typical for a single storage resource
system. We can see that the I/O cost is very expensive even
if state-of-the-art I/O optimizations such as collective I/O is
performed.

In our multi-storage resource architecture, on the other
hand, if the user knows that she is going to carry out data
analysis on dataset temp shortly after it is generated, she
can suggest that the system place temp on a ‘closer’ storage

Table 2
Run-time parameter set of Astro3D.

Item Size Data type

Problem size 128 × 128 × 128 –
Max num of iterations 120 –
Data analysis freq 6 Float
Data visualization freq 6 Unsigned Char
Checkpointing freq 6 Float

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX() PIPS No:5122937 artty:res (Kluwer BO v.2002/10/03)
c5122937.tex; 25/03/2003; 14:03; p. 9

MULTI-STORAGE RESOURCE ARCHITECTURE AND I/O PERFORMANCE PREDICTION 197

(a) (b) (c)

Figure 10. I/O time for data analysis (a), visualization (b) and superfile (c).

medium (such as remote disks in this example). This sub-
set of the total datasets generated by Astro3D could be small
enough to be held on a faster medium for fast data access
and our multi-storage resource system can provide a platform
for such an opportunity. Although the total time of generat-
ing all this data is not saved much by placing the temp on
remote disks (figure 9(2)), when measuring the entire inves-
tigation including running the simulation and performing the
data analysis, she can save significant time because the re-
mote disk access will be faster than retrieving the data from
tape (figure 10).

Another opportunity our multi-storage resource system
can provide is that if the user knows that she is only inter-
ested in temp and possibly press and all the other datasets are
not going to be used for a particular run, she can DISABLE
dump of the other datasets by providing a ‘location’ hint such
as DISABLE. So the total I/O time of Astro3D can be de-
creased significantly (figure 9(3)).

In our second example, the user performs parallel volume
rendering on vr-temp or interactively visualizes the data using
VTK, she can suggest that the system dump vr-temp to lo-
cal disks. Vr-temp consists of unsigned characters, its size is
small enough to fit on local disks in our example. As vr-temp
is closely related to vr-press, the user may also possibly ex-
amine vr-press as well, so vr-press is sent to remote disks for
possible faster usage than from tapes. All the other datasets
which will not be used are dumped to tapes. In addition, if the
user knows that all the other datasets will not be used at all,
she can also DISABLE them. So the total write time saved is
huge (figure 9(5)). When the user reads vr-temp by parallel
volume rendering or interactive visualization tools (VTK), the
total read time is 10 times faster than from tapes. If user also
reads vr-press, she can also save time by reading data from
remote disks (figure 10).

Our next example is to demonstrate a novel optimization
approach called superfile to efficiently access large numbers
of small files from remote systems. Suppose the images files
generated by Volren are going to be stored on remote disks
or tapes. When superfile is applied, these small files will be
transparently written to one large superfile when they are cre-
ated. Later on, when the user reads this data, the first read will
bring all the data into memory. Then the subsequent read can
be satisfied by copying data directly from main memory. In
this approach, there is only one remote I/O access with large
data size compared to multiple remote I/O calls with small

data sizes that would dominate the I/O performance [26] in
the naive approach. Figure 10(c) shows that the performance
improvement is significant.

In our final example, suppose that the remote tape system
is down for maintenance, recovery or other problems which
could often happen. We can still satisfy large storage space
requirements for simulations by aggregating all the space of
remote disks, local disks and other storage resources in the
future, i.e. the user does not have to stop her experiments.
Therefore, this multi-storage resource system can provide a
more reliable computing environment.

We also show the predicted I/O time for each performance
number in figures 9 and 10. Our prediction is quite close to
the actual I/O time.4 Our performance predictor is integrated
with our IJ-GUI [27], a Java graphical environment that can
help the user submit her job, carry out visualization, perform
data analysis and so on. Figure 11 shows a prediction result
of Astro3D. It is very easy for the user to change parameters
directly in the Java window to get other prediction results.

6. Related work

The related work can be divided into four groups.
One is parallel file systems, including IBM Vesta [10]

and PIOFS [11], Intel Paragon [24], HP Exemplar [5], Gal-
ley [23], PPFS [19], PIOUS [22] and so on. These parallel
file systems, either commercial or experimental, take advan-
tage of parallel I/O techniques, caching, prefetching, etc. to
achieve significant performance improvements. The storage
of these systems usually includes only secondary storage re-
sources and they are tightly coupled with the compute nodes,
so they do not scale well in capacity with the increase of ap-
plications’ requirements. Therefore, the storage capacity re-
quired by large-scale data intensive applications could be a
problem for these systems.

Another body of work includes run-time systems such as
MPI-I/O [35–37], PASSION [8,33,34], PANDA [7,25] and
others [4,27,39]. These systems provide high level structured
interfaces on top of low level native parallel file systems [20]
and try to match the applications’ data structure which is usu-
ally a multidimensional array. They also provide optimiza-
tions such as collective I/O and data sieving to solve the prob-
lems brought by native parallel file systems for many popular
access patterns. Again, these systems do not help when appli-
cation size increases.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX() PIPS No:5122937 artty:res (Kluwer BO v.2002/10/03)
c5122937.tex; 25/03/2003; 14:03; p. 10

198 SHEN ET AL.

Figure 11. A prediction result of Astro3D. In this example, dataset temp is written to remote disks and all the other datasets are dumped to remote tapes.
The I/O optimization approach is collective I/O and maximum iteration number is 120. The prediction result is commensurate with the actual I/O cost in

figure 9(2).

The third group is distributed file systems such as
NFS [32], xFS [1], and Coda [9]. These file systems provide
easy access to distributed resources, but they are not designed
for high performance parallel data access required by parallel
applications.

The Grid [13–15,17] infrastructure will connect multiple
regional and national computational grids, creating a univer-
sal source of pervasive and dependable computing power that
supports dramatically new classes of applications. To address
the data management problem of Grid, the Data Grid [6] has
proposed some design principles of storage systems and data
management for large data collections. For the large amounts
of small files typically found in digital library systems, SRB’s
container [31] concept can significantly reduce the number of
tape storage accesses, but it still suffers from multiple remote
data accesses in a distributed environment.

7. Conclusions and future directions

In this paper, we have presented a multi-storage resource ar-
chitecture for scientific simulations, which provides a more
flexible and reliable computing platform in a distributed en-
vironment. This architecture, compared to the traditional
single-storage resource architecture, can combine the advan-
tages of different classes of storage resources without suf-

fering their disadvantages. This architecture is also scalable
since other storage resources can be easily added.

We also established an I/O performance prediction mech-
anism that can help the user better evaluate her applications.
Our experiments have shown that the prediction is very close
to the actual I/O time.

We would like to add more storage media to our system.
Our current post-processing programs and tools are all in-
stalled locally. In the future, they could also be distributed.
Until now, we required the user to explicitly specify the stor-
age type hint. In the future, the user can also specify only a
performance requirement for a particular run of her applica-
tion and our system can automatically decide which storage
resources should be used according to the capacity and per-
formance of each storage resource.

Acknowledgements

This research was supported by the Department of Energy
under the Accelerated Strategic Computing Initiative (ASCI)
Academic Strategic Alliance Program (ASAP) Level 2, un-
der subcontract No W-7405-ENG-48 from Lawrence Liver-
more National Laboratories. We would like to thank Reagan
Moore and Mike Wan of SDSC for helping us with the usage

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX() PIPS No:5122937 artty:res (Kluwer BO v.2002/10/03)
c5122937.tex; 25/03/2003; 14:03; p. 11

MULTI-STORAGE RESOURCE ARCHITECTURE AND I/O PERFORMANCE PREDICTION 199

of SRB. We thank Mike Gleicher and Tom Sherwin of SDSC
for answering our HPSS questions.

Notes

1. Northwestern University is very close to Argonne National Lab and the
data exchange between Postgres database at Northwestern and the appli-
cation at Argonne is small, so we treat it as a local database.

2. SRB is a client–server middleware that provides a uniform interface for
connecting to heterogeneous data resources over a network and accessing
replicated datasets. Using SRB has some advantages.

3. At SDSC, the HPSS internal API is, in general, reserved for system ad-
ministration.

4. For remote systems, because the network is involved, there is fluctuation
in performance numbers possibly due to different network traffic condi-
tions. The numbers shown here are the most common cases.

References

[1] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli and R. Wang,
Serverless network file systems, in: Proc. of the 15th ACM Symposium
on Operating Systems Principles (1995) pp. 109–126.

[2] C. Baru, R. Frost, J. Lopez, R. Marciano, R. Moore, A. Rajasekar and
M. Wan, Meta-data design for a massive data analysis system, in: Proc.
of CASCON’96 Conference (1996).

[3] C. Baru, R. Moore, A. Rajasekar and M. Wan, The SDSC storage re-
source broker, in: Proc. of CASCON’98 Conference, Toronto, Canada
(December 1998).

[4] R. Bennett, K. Bryant, A. Sussman, R. Das and J. Saltz Jovian,
A framework for optimizing parallel I/O, in: Proc. of the 1994 Scal-
able Parallel Libraries Conference (1994).

[5] R. Bordawekar, S. Landherr, D. Capps and M. Davis, Experimental
evaluation of the Hewlett-Packard exemplar file system, Proc. ACM
SIGMETRICS Performance Evaluation Review 25(3) (1997) 21–28.

[6] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury and S. Tuecke,
Towards an architecture for the distributed management and analysis
of large scientific datasets, Journal of Network and Computer Applica-
tions ????.

[7] Y. Cho, M. Winslett, J. Lee, Y. Chen, S. Kuo and K. Motukuri, Collec-
tive I/O on a SGI CRAY Origin 2000: Strategy and performance, in:
Proc. of the 1998 International Conference on Parallel and Distributed
Processing Technique and Applications (1998) pp. 485–492.

[8] A. Choudhary, R. Bordawekar, M. Harry, R. Krishnaiyer, R. Pon-
nusamy, T. Singh and R. Thakur, PASSION: Parallel and scalable soft-
ware for input–output, NPAC Technical report SCCS-636 (September
1994).

[9] Coda File System, http://www.coda.cs.cmu.edu.
[10] P. Corbett and D. Feitelson, The Vesta parallel file system, ACM Trans-

actions on Computer Systems 14(3) (August 1996) 225–264.
[11] P. Corbett, D. Feitelson, J.-P. Prost, G. Almasi, S.J. Baylor, A. Bolmar-

cich, Y. Hsu, J. Satran, M. Snir, R. Colao, B. Herr, J. Kavaky, T. Morgan
and A. Zlotek, Parallel file systems for the IBM SP computers, IBM
Systems Journal 34(2) (January 1995) 222–248.

[12] R.A. Coyne, H. Hulen and R. Watson, The high performance storage
system, in: Proc. of the Conf. on Supercomputing, Portland, OR (1993).

[13] I. Foster and C. Kesselman, Globus: A metacomputing infrastructure
Toolkit, International Journal of Supercomputer Applications (1997)
115–128.

[14] I. Foster and C. Kesselman, The Globus project: A status report, in:
Proc. of IPPS/SPDP’98 Heterogeneous Computing Workshop (1998)
pp. 4–18.

[15] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure (Morgan Kaufmann, Los Altos, CA, 1998).

[16] I. Foster, D. Kohr Jr., R. Krishnaiyer and J. Mogill, Remote I/O: Fast
access to distant storage, in: 5th Workshop on I/O in Parallel and Dis-
tributed Systems (1997).

[17] Global Grid Forum, http://www.gridforum.org.
[18] HPSS Worldwide Web Site, http://www.sdsc.edu/hpss.
[19] J. Huber, C. Elford, D. Reed, A. Chien and D. Blumenthal, PPFS:

A high performance portable parallel file system, in: Proc. of the 9th
ACM International Conference on Supercomputing (1995) pp. 385–
394.

[20] D. Kotz, Multiprocessor file system interfaces, in: Proc. of the 2nd
International Conference on Parallel and Distributed Information Sys-
tems (1993) pp. 194–201.

[21] A. Malagoli, A. Dubey and F. Cattaneo, A Portable and Efficient Paral-
lel Code for Astrophysical Fluid Dynamics, http://astro.uchicago.edu/
Computing/On-Line/cfd95/camelse.html.

[22] S. Moyer and V. Sunderam, PIOUS: A scalable parallel I/O system
for distributed computing environment, in: Proc. of the Scalable High-
Performance Computing Conference (1994) pp. 71–78.

[23] N. Nieuwejaar and D. Kotz, The Galley parallel file system, in: Proc. of
the 10th ACM International Conference on Supercomputing, Philadel-
phia, PA (May 1996) pp. 374–381.

[24] B. Rullman, Paragon parallel file system, External Product Specifica-
tion, Intel Supercomputer Systems Division.

[25] K.E. Seamons, Y. Chen, P. Jones, J. Jozwiak and M. Winslett, Server-
directed collective I/O in Panda, in: Proc. of the Conf. on Supercom-
puting, San Diego, CA (December 1995).

[26] X. Shen, W. Liao and A. Choudhary, Remote I/O Optimization and
Evaluation for Tertiary Storage Systems through Storage Resource
Broker, in: Proc. of IASTED Applied Informatics, Innsbruck, Austria
(2001).

[27] X. Shen, W. Liao, A. Choudhary, G. Memik, M. Kandemir, S. More,
G. Thiruvathukal and A. Singh, A novel application development envi-
ronment for large-scale scientific computations, in: International Con-
ference on Supercomputing (May 2000).

[28] P.H. Smith and J. van Rosendale, Data and Visualization Corridors,
Report on DVC Workshop Series (1998).

[29] W. Smith, I. Foster and V. Taylor, Predicting application run time using
historical information, in: IPPS/SPDP ’9 Workshop on Job Scheduling
Strategies for Parallel Processing (1999).

[30] SRB Version 1.1.4 Manual, http://www.npaci.edu/DICE/SRB/
OldReleases/SRB1-1-4/SRB1-1-4.htm.

[31] SRB Version 1.1.7 Manual, http://www.npaci.edu/DICE/SRB/
OldReleases/SRB1-1-7/SRB.htm.

[32] H. Stern, Managing NFS and NIS (O’Reilly and Associates, 1991).
[33] R. Thakur, R. Bordawekar, A. Choudhary, R. Ponnusamy and T. Singh,

PASSION runtime library for parallel I/O, in: Proc. of the Intel Super-
computer User’s Group Conference (1995).

[34] R. Thakur, A. Choudhary, R. Bordawekar, S. More and S. Kuditipudi,
Passion: Optimized I/O for parallel applications, IEEE Computer 29(6)
(1996) 70–78.

[35] R. Thakur, W. Gropp and E. Lusk, A case for using MPI’s derived
datatypes to improve I/O performance, in: Proc. of SC98: High Per-
formance Networking and Computing (1998).

[36] R. Thakur, W. Gropp and E. Lusk, On implementing MPI-IO portably
and with high performance, Preprint ANL/MCS-P732-1098, Argonne
National Laboratory, Mathematics and Computer Science Division
(1998).

[37] R. Thakur, W. Gropp and E. Lusk, Data sieving and collective I/O in
ROMIO, in: Proc. of the 7th Symposium on the Frontiers of Massively
Parallel Computation (1999).

[38] R. Thakur, E. Lusk and W. Gropp, I/O characterization of a portable as-
trophysics application on the IBM SP and Intel Paragon Preprint, MCS-
P534-0895, Argonne National Laboratory, Mathematics and Computer
Science Division, (1995).

[39] S. Toledo and F.G. Gustavson, The design and implementation of SO-
LAR, a portable library for scalable out-of-core linear algebra com-
putations, in: Proc. of 4th Annual Workshop on I/O in Parallel and
Distributed Systems (1996).

[40] UniTree User Guide, Release 2.0 (UniTree Software, Inc., 1998).

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX() PIPS No:5122937 artty:res (Kluwer BO v.2002/10/03)
c5122937.tex; 25/03/2003; 14:03; p. 12

200 SHEN ET AL.

Xiaohui Shen received his Ph.D. from Northwestern
University, IL, in computer engineering, in January
2001. He is currently a Senior Software Engineer
in Core Technology Department, Personal Commu-
nication Sector, Motorola Inc. His research inter-
ests include parallel and distributed computing, data
management, I/O and storage systems and wireless
Java. He received his M.S. and B.S. degrees from
Department of Computer Science at Tsinghua Uni-
versity, Beijing. He has served as a program com-
mittee member for several international conferences
and workshops.
E-mail: axs095@email.mot.com.

Alok Choudhary received his Ph.D. from the Uni-
versity of Illinois, Urbana-Champaign, in electrical
and computer engineering, in 1989, M.S. from the
University of Massachusetts, Amherst, in 1986 and
B.E. (Hons.) from Birla Institute of Technology and
Science, Pilani, India, in 1982. He is currently a
Professor in the Electrical and Computer Engineer-
ing Department and the Kellogg School of Man-
agement, Marketing at Northwestern University, IL.
From 1989 to 1996 he was a faculty member in the
ECE Department at Syracuse University. He has
worked in industry for computer consultants prior
to 1984. His main research interests are in high-
performance computing and communication systems
and their applications in many domains information
processing, data mining and scientific computing. In
particular, his interests lie in the design and eval-
uation of architectures and software systems (from
system software such as runtime systems, compil-
ers and programming languages to applications),
high-performance servers, and input-output. He has
served as program chair and general chair for several
conferences in parallel and high-performance com-

puting areas. Choudhary received the National Sci-
ence Foundation’s Young Investigator Award in 1993
(1993–1999). He has also received an IEEE Engi-
neering Foundation award, an IBM Faculty Devel-
opment award and an Intel Research Council award.
E-mail: choudhar@ece.nwu.edu

Celeste Matarazzo is a computer scientist at Lawrence Livermore National
Laboratory, currently working on the ASCI (Advanced Simulation and Com-
puting) program. She has more than fifteen years of experience in software
development. She is a research program manager and leader of the Data
Science research group in the Center for Applied Scientific Computing. She
also leads the ASCI Scientific Data Management (SDM) project. This project
aims to provide intelligent assistance in managing terabytes of complex sci-
entific data through the development of data models and tools and the integra-
tion of databases, storage, networks and other computing resources. Previ-
ous positions included developing software for climate modeling simulations,
output devices, and defense applications. She has a Bachelor of Science de-
gree in mathematics and computer science from Adelphi University.
E-mail: matarazzo1@LLNL.gov

Punita Sinha is a computer scientist at Lawrence Livermore National Lab-
oratory. She has over 17 years of experience in software development. Her
expertise is in large scale software development projects. She is currently
working in the National Ignition Facility project at Livermore as part of the
Integrated Computer Control Systems team for the world’s largest laser sys-
tem. She was previously working in the Scientific Data Management team of
the ASCI (Accelerated Strategic Computing Initiative) Project at Livermore,
evaluating academic research and commercial tools in data analysis and data
management. Prior to LLNL she worked at IBM’s Silicon Valley Lab devel-
oping commercial compilers and other application development tools. In ad-
dition to development work she has done business development for data man-
agement tools at IBM. She has an undergraduate degree in physics, chemistry
and mathematics from Bangalore University, India; and a graduate degree in
computer science from Boston University.

