

PERFORMANCE EVALUATION AND CHARACTERIZATION OF SCALABLE
DATA MINING ALGORITHMS

Ying Liu, Jayaprakash Pisharath, Wei-keng Liao, Gokhan Memik, Alok Choudhary, Pradeep Dubey*
Department of Electrical and Computer Engineering, Northwestern University

Evanston, IL – 60208. USA.
{yingliu, jay, wkliao, memik, choudhar}@ece.northwestern.edu

ABSTRACT

Data mining has become one of the most essential tools in
diverse fields. The increases in data sizes and algorithmic
complexities require the computational power of chip to
increase even further. In this paper, we present detailed
characteristics from the hardware and software
perspectives for a set of representative data mining
programs. We first design MineBench, a benchmarking
suite containing representative data mining applications
from multiple categories including two classification, two
association rule mining, and four clustering applications.
We evaluate the MineBench applications on an 8-way
Shared Memory Parallel (SMP) machine and analyze
their important performance characteristics. During the
evaluation, the input datasets and the number of
processors used are varied to measure the scalability of
the applications in our benchmark suite. We present the
results based on characteristics such as scalability, I/O
complexity, fraction of time spent in the OS mode, and
communication/synchronization overheads. This
information can aid designers of future systems as well as
programmers of new data mining algorithms to achieve
better system and algorithmic performance.

KEY WORDS

Performance evaluation, data mining, benchmark, parallel
computing

1. Introduction

As the data sizes accumulated from various fields are
exponentially increasing, data mining techniques that
extract information from huge amount of data have
become popular in commercial and scientific domains,
including marketing, customer relationship management,
scoring and risk management, recommendation systems,
fraud detection, cosmology simulation, climate modeling,
bioinformatics, drug discovery, intrusion detection, World
Wide Web, etc [1].

* From Intel Corporation.

 As the amount of data collected increases, we will
need to utilize even more complicated data mining
applications. However, the performance of computer
systems is improving at a slower rate compared to the
increase in demand for data mining applications. Recent
trends suggest that the system performance (data based on
memory and I/O bound workloads like TPC-H) has been
improving at a rate of 10-15% per year, whereas, the
volume of data that is collected doubles every year.
Having observed this trend, researchers have focused on
efficient implementations of different data mining
algorithms. Among these, a major approach taken is the
development of parallel and distributed versions of such
algorithms. While these algorithms have been efficiently
improved, the basic characteristics that define these
algorithms remain under studied. Such information in
turn can be utilized during the implementation of the
algorithms and the design/setup of the computing
systems. Understanding the performance bottlenecks is
essential not only for processor designers to adapt their
architectures to data mining applications, but also for
programmers to adapt their algorithms to the revised
requirements of applications and architectures.
 In this paper, we try to investigate data mining
applications to identify their characteristics in a sequential
as well as a parallel execution environment. We first
establish a benchmarking suite of applications, called
MineBench, that encompass algorithms commonly used
in data mining. We believe that analyzing the behavior of
a complete benchmarking suite will certainly give a better
understanding of the underlying bottlenecks for data
mining applications. Such studies have been done for
other fields, for instance, SPEC [2], TPC [3], SPLASH
[4], MediaBench [5] are well known benchmarks built
through such an effort. Then, we analyze the architectural
properties of these applications, and also study their
scalabilty with respect to these characteristics. We
analyze the characteristics of the applications in Shared
Memory Parallel (SMP) machine. Despite their limitation
on scalability, SMPs have become the most common
parallel computing type in industry due to their simplicity.
By analyzing the application characteristics in this
representative multiprocessor system, we provide an
insight into the parallel applications, which can be

potentially helpful when developing parallel data mining
algorithms on SMPs.
 The rest of the paper is organized as follows. In the
next section, we overview the related work. In Section 3,
we discuss the data mining applications that are included
in our benchmarking suite. Section 4 presents the
evaluation methodology. The characteristics of our
benchmark applications are presented in Section 5.
Section 6 summarizes the results.

2. Related Work

A great number of efficient data mining technologies have
been developed in the recent years [1, 6]. In order to meet
the demand in performance, many parallel data mining
algorithms have also been developed. In the past decade,
most research on parallel data mining [1, 7, 8] has been
focused on Distributed Memory Parallel machines due to
its capability for massive parallelism. However, Shared
Memory Parallel machines are becoming the dominant
types of parallel machines in industry because of its
simplicity and low to medium degree of parallelism
besides its nominal price. A few parallel algorithms on
SMPs have been proposed in [9, 8].
 Similar performance characterization work of database
workloads is seen in [10, 11], and specifically targeted for
SMPs in [12, 13]. Performance characterization of
individual data mining algorithm has been done in [14,
15], where they focus on the memory and cache behaviors
of a decision tree induction program. However, we
believe that analyzing the behaviors of a complete data
mining benchmarking suite will certainly give a better
understanding of the underlying bottlenecks for data
mining applications.

3. MineBench Application Suite

We first establish MineBench, a benchmarking suite
containing data mining applications. The selection
principle is to include categories and applications that are
commonly used in industry and are likely to be used in
the future, thereby achieving a realistic representation of
the existing applications. MineBench can be used by both
programmers and processor designers for efficient system
design. MineBench has 8 applications from three of the
categories: classification, association rule mining (ARM),
and clustering. The applications as well as important
characteristics of the applications are listed in Table 1,
which presents the applications, the category they belong
to, a short description of the applications, and the
programming language used to implement it.

3.1 Classification Programs

A classification algorithm is to use a training dataset to
build a model such that the model can be used to assign

Table 1. MineBench applications.

Algorithms Category Description Lang.
ScalParC Classification Decision tree classifier C
Naïve
Bayesian

Classification Statistical classifier based
on class conditional
independence

C++

K-means Clustering Partitioning method C
Fuzzy K-
means

Clustering Fuzzy logic based K-
means

C

BIRCH Clustering Hierarchical method C++
HOP Clustering Density-based method C
Apriori ARM Horizontal database, level-

wise mining based on
Apriori property

C/C++

Eclat ARM Vertical database, break
large search space into
equivalence class

C++

unclassified records into one of the defined classes.
Classification has applications in diverse fields such as
retail marketing, fraud detection, and design of
telecommunication service plans [1].
 ScalParC is an efficient and scalable variation of
decision tree classification [7]. The decision tree model is
built by recursively splitting the training dataset based on
an optimal criterion until all records belonging to each of
the partitions bear the same class label. Among many
classification methods proposed over the years, decision
trees are particularly suited for data mining, since they are
built relatively fast compared to other methods, obtaining
similar or often better accuracy [16], and easy to interpret
[17].
 Bayesian classifiers are statistical classifiers based on
Bayes’ Theorem. They predict the probability that a
record belongs to a particular class. A simple Bayesian
classifier, called Naive Bayesian classifier [18], is
comparable in performance to decision trees and exhibits
high accuracy and speed when applied to large databases.

3.2 Clustering Programs

Clustering is the process of discovering the groups of
similar objects from a database to characterize the
underlying data distribution. It has wide applications in
market or customer segmentation, pattern recognition,
biological studies, and spatial data analysis [1]. Generally,
clustering algorithms can be classified into four
categories: partitioning-based, hierarchical-based,
density-based, and grid-based.
 K-means [19] is a partition-based method and is
arguably the most commonly used clustering technique.
Given the user-provided parameter k, the initial k cluster
centers are randomly selected from the database. Then, K-
means assigns each object to its nearest cluster center
based on some similarity function. Once the assignments
are completed, new centers are found by the mean of all
the objects in each cluster. This process is repeated until
two consecutive iterations generate the same cluster
assignment.

 K-means assigns a data object to be not to be a
member of a particular cluster. The Fuzzy K-means
algorithm [20] relaxes this condition by assuming that a
data object can have a probability of membership in each
cluster. For each object, the sum of the probabilities to all
clusters equals to 1. Compared to K-means, the
calculation for the fuzzy membership results in higher
computational cost. However, the flexibility of assigning
objects to multiple clusters might be necessary to generate
better clustering qualities.
 BIRCH [21] is a hierarchical clustering method that
employs a hierarchical tree to represent the closeness of
data objects. BIRCH first scans the database to build a
clustering-feature (CF) tree to summarize the cluster
representation. Then, a selected clustering algorithm, such
as K-means, is applied to the leaf nodes of the CF tree.
For a large database, BIRCH can achieve good
performance and scalability. It is also effective for
incremental clustering of incoming data objects.
 Density-based methods grow clusters according to the
density of neighboring objects or according to some other
density function. HOP [22], originally proposed in
astrophysics, is a typical density-based clustering method.
After assigning an estimation of its density for each
particle, HOP associates each particle with its densest
neighbor. The assignment process continues until the
densest neighbor of a particle is itself. All particles
reaching this state are clustered as a group. HOP has
diverse applications in molecular biology, geology, and
astronomy.

3.3 Association Rule Mining (AMR) Programs

Association rule mining is to find the set of all subsets of
items or attributes that frequently occur in database
records. ARM can discover interesting association
relationships among the large number of business
transaction records. This can aid business decision-
making processes, such as catalog design, cross-
marketing, and loss-leader analysis [1].
 Apriori [23] is arguably the most influential ARM
algorithm. It explores the level-wise mining of Apriori
property: all nonempty subsets of a frequent itemset must
also be frequent. At the kth iteration (for k > 1), it forms
frequent (k+1)-itemset candidates based on the frequent k-
itemsets and scans the database to find the complete set
of frequent (k+1)-itemsets, Lk+1. To improve the
efficiency, a hash-based technique is used to reduce the
size of the candidate set.
 Eclat [8] uses a vertical database format. It can
determine the support of any k-itemset by simply
intersecting the id-list of the first two (k-1)-subsets that
share a common prefix. It breaks the search space into
small, independent, and manageable chunks. Efficient
lattice traversal techniques are used to identify all the true
maximal frequent itemsets.

3.4 Parallel Implementation

As mentioned in the earlier sections that part of our goal
is to test the scalability of data mining applications on
SMPs, parallel versions of our benchmark applications are
also provided. We include sequential (serial/single
processor) implementation and evaluation results for all
applications. Experimental results for 5 parallel
applications out of the 8 benchmark applications have
been provided: ScalParC (Classification), K-means,
Fuzzy K-means, HOP (Clustering), and Apriori (ARM).
We chose these applications since these parallel
algorithms are commonly found in the literature.
ScalParC is parallelized on SMPs using the scheme
presented in [9]. Simple data parallelism is exploited to
parallelize K-means, Fuzzy K-means, and HOP. We
implement parallel Apriori based on the Common
Candidate Partitioned Database (CCPD) strategy
proposed in [8].

4. Evaluation methodology

We study each application both from the algorithmic and
the system perspective. Routines within each application
are analyzed in detail both from the functional and
architectural granularity to identify the key parameters in
each algorithm.

4.1 Hardware Platform

We conduct our evaluation on an Intel IA-32
multiprocessor platform, which consists of an Intel Xeon
8-way Shared Memory Parallel (SMP) machine running
Linux operating system, a 4GB shared memory and 1024
KB L2 cache for each processor. Each processor has
16KB non-blocking, integrated L1 instruction and data
caches. The number of processors is varied to study the
scalability.

4.2 Software Tools

In all the experiments, we use VTune Performance
Analyzer [24] for profiling the functions within our
application, and for measuring their breakdown execution
times. VTune counter monitor provides a wide assortment
of metrics. We look at different characteristics of the
applications: execution time, fraction of time spent in the
OS space, communication/synchronization complexity,
and I/O complexity.
 In parallel implementations of the applications, we use
OpenMP pragmas [25]. OpenMP is a specification for a
set of compiler directives, library routines, and
environment variables that can be used to specify shared
memory parallelism. Due to its simplicity, OpenMP is
quickly becoming one of the most widely used
programming styles for SMPs. In SMPs, processors
communicate through shared variables in the single
memory space. Synchronization is used to coordinate

processes. VTune provides the aggregate time spent on
different types of pragmas, so that we can accurately
measure the time spent on synchronization.

4.3 Dataset Characteristics

Input data is an integral part of the data mining
applications. For ScalParC and Naïve Bayesian, we use a
synthetic dataset, F26-A32-D250K, generated by the IBM
Quest data generator [26]. The notation F26-A32-D250K
denotes a dataset with Function 26, Attribute size 32, and
Data comprising of 250,000 records. For Apriori and
Eclat, we also use a synthetic dataset, T20-I6-D2000K,
from IBM Quest data generator. This notation denotes the
dataset contains 2,000,000 transactions, the average
transaction size is 20, and the average size of the maximal
potentially large itemsets is 6. The number of items is
1000 and the number of maximal potentially large
itemsets is 2000. For HOP and BIRCH, we use a real data
from a cosmology application, ENZO [27], having
3,932,160 particles. We use a real image database for K-
means and Fuzzy K-means. This database consists of
17,695 scenery pictures. Each picture is represented by
two features: color and edge. We use the dataset
represented by edge in our experiment. Since the
clustering quality of K-means methods highly depends on
the input parameter k, we perform both K-means with ten
different k values ranging from 4 to 13. The timing results
provided in this paper are the accumulated time for the ten
runs.

5. Program Characteristics

In this section, we analyze several characteristics of
MineBench programs. For each characteristic, we analyze
how the results vary when we change the number of
processors used in the execution. Our measures of interest
include the overall program execution time, the operating
system overheads, I/O times and synchronization times.
The benefits and drawbacks of using a shared memory
model for our data mining algorithms are also discussed.

5.1 Execution Time

Table 2 shows the application execution times on 1
processor and speedups with respect to 1 processor case.
We measure the scalability of the parallel applications by
executing them on 1, 4 and 8 processors. The
performance numbers for the 2-processor case is not
presented in our paper due to the fact that there is trivial
(or in some cases, none) improvement in performance
when it is executed on 2 processors.
 The best speedup, 6.06 on 8 processors, is seen in
ScalParC. The balanced data partition on to processors
minimizes the memory access contention for concurrent
read-write operations on the shared variables. If data is
evenly distributed, each processor is able to work
independently (faster) by accessing only its respective

data block in the memory without requiring access to
memory blocks of other processors. HOP follows
ScalParC in terms of the achieved speedups. Apriori has
limitations when extended to SMPs. This is due to the
significant amount of atomic access to the shared hash-
tree structure and the nature of unbalanced transaction
data.

Table 2. Execution times for applications on 1
processor (in seconds) and speedups respect to 1
processor case. P1, P4, P8 represent 1, 4 and 8
processor cases.

Program P1(s) P4 P8

HOP 52.7 1.92 6.06

K-means 12.9 3.9 4.96

Fuzzy K- means 146.8 3.44 5.42

BIRCH 31.7 - -

ScalParC 110.6 3.88 5.12

Bayesian 25.1 - -

Apriori 102.7 2.66 3.36

Eclat 81.5 - -

5.2 Operating System Overheads

In any program, the CPU utilization is split into operating
system (OS) and user space. The OS overheads include
factors like system calls (for process/thread management,
invoking locks, handling hardware interrupts), and
allocation of intermediate system buffers during program
execution. In Figure 1, we present the OS component (as
a percentage of total execution time) of each individual
application. When the number of processors is 1, the
operating system overheads are minimal. The maximum
overhead (1.7%) on 1 processor is seen for BIRCH. When
the number of processors deployed is increased, the OS
component increases drastically due to the parallelization
overheads. Under the OpenMP programming
environment, each OpenMP (omp) directive adds extra
cycles of overhead. Program locks (which are basically
system locks) used in parallelization also contribute to the
OS overheads. Collectively, the more processors, the
more OS overheads. Among the applications, K-means
has the worst overhead, 40%. It helps explain the poor
scalability of K-means. This is as a result of the omp
directives and locks during the parallelization of K-
means.

5.3 I/O Time

In general, I/O is a key component that could affect the
overall performance of a system. We study the time for
performing I/O as a percentage of the overall execution
time in Figure 2. It is seen that the overheads arising from
I/O operations in MineBench are small except for
Bayesian. For Bayesian, data is read as ASCII characters
one by one, whereas for ScalParC (another classification

algorithm), data is read in bulk string mode (less read
operation overheads). These results highlight the
computation-intensive nature of our benchmark.

5.4 Communication/Synchronization Overheads

In a shared memory model, the inter-processor
communication is achieved by accessing shared variables
(which in turn are shared locations in the memory). This
could be a considerable bottleneck if the shared variable
is locked by another processor, in which case the
requesting processor must wait until the lock is released.
Moreover, during parallel execution, there are execution
breakpoints where all processors need to synchronize
their data values for all their local/shared variables. This
again, could be another bottleneck. All such overheads are
reflected in the synchronization costs shown in Figure 3.
When using one processor, the synchronization overheads
are negligible due to no inter-processor communication.
In our benchmark, the synchronization overheads increase
when more processors participate because shared and
private variables arise. It is seen that for all parallel
applications, the average synchronization time is just
0.14% of the overall execution time. This implies that the
idle time spent in synchronization is very less and the
CPU is very well utilized for mining information from the
input data.

6. Conclusion

In this paper, we introduce and evaluate MineBench, a
benchmarking suite for data mining applications. It
contains 8 representative applications: two association
rule mining algorithms, two classification algorithms, and
four clustering algorithms. We have studied important
characteristics of the applications when executed on an 8-
way SMP machine. Our results indicate that usually the
OS overheads, the synchronization overheads, and the I/O
time are usually small in MineBench applications. These
results indicate that improvements in the performance of
processors are likely to have a significant impact on the
overall performance of data mining systems. In addition,
techniques, like prefetching, should also improve the
performance of the processor considerably. To improve
the performance of their applications, system designers as
well as programmers can utilize the characteristics of
MineBench and achieve better system performance.

4. Acknowledgements

This work was supported in part by Intel Corporation,
NSF grant CNS-0406341 and a grant from DOE's
SCIDAC program.

References:

[1] Han, J. and M. Kamber, Data Mining: Concepts and
Techniques (Morgan Kaufmanm, 2001).
[2] Standard, P.E.C., Spec CPU2000: Performance
Evaluation in the New Millennium (Version 1.1.
December 27, 2000).
[3] TPC, Transaction Processing Performance Council,
http://www.tpc.org/.
[4] Woo, S.C., et al., The SPLASH-2 Programs:
Characteriazation and methodological considerations,
International Symposium on Computer Architecture, June
1995.
[5] Lee, C., M. Potkonjak, and W.H. Mangione-Smith,
MediaBench: A Tool for Evaluating and Synthesizing

0.E+00

1.E+07

2.E+07

3.E+07

4.E+07

5.E+07

6.E+07

HOP K-means
0.E+00

1.E+08

2.E+08

3.E+08

4.E+08

5.E+08

6.E+08

7.E+08

8.E+08

Fuzzy K-means ScalParC Apriori

P1 P4 P8

Figure 3. Synchronization time in CPU cycles
for all applications. The synchronization time
increases when computation is scaled to
multiple processors.

Figure 1. OS overheads of MineBench
applications as a percentage of the total
execution time.

0

5

10

15

20

25

30

35

40

45

HOP K-means Fuzzy K-means BIRCH ScalParC Bayesian Apriori Eclat

P1 P4 P8

Figure 2. Percentage of I/O time with
respect to the overall execution times.

0.00
0.05
0.10
0.15
0.20
0.25
0.30

HOP K-means Fuzzy K-means
0
10
20
30
40
50
60
70

BIRCH ScalParC Bayesian Apriori Eclat

Multimedia and Communicatons Systems, International
Symposium on Microarchitecture, 1997.
[6] Michalski, R.S., I. Brakto, and M. Kubat, Machine
Leaning and Data Mining: Methods and Applications
(John Wiley & Sons, New York, 1998).
[7] Joshi, M.V., G. Karypis, and V. Kumar, ScalParC: A
New Scalable and Efficient Parallel Classification
Algorithm for Mining Large Datasets, International
Parallel Processing Symposium, 1998.
[8] Zaki, M.J., Parallel and Distributed Association
Mining: A Survey, IEEE Concurrency, Special Issue on
Parallel Mechanisms for Data Mining, 7(4), Dec. 1999,
14-25.
[9] Zaki, M., C.-T. Ho, and R. Agrawal, Scalable Parallel
Classification for Data Mining on Shared-Memory
Multiprocessors, IEEE International Conference on Data
Engineering, March 1999.
[10] Hankins, R., et al., Scaling and Charaterizing
Database Workloads: Bridging the Gap between Research
and Practice, Intl. Symposium on Microarchitecture,
2003.
[11] Keeton, K., et al., Performance Characterization of a
Quad Pentium Pro SMP using OLTP Workloads, Intl.
Symposium on Computer Architecture, 1998.
[12] Ranganathan, P., et al., Performance of database
workloads on shared-memory system with out-of-order
processors, 8th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), San Jose, CA, 1998.
[13] Trancoso, P., et al., The memory performance of
DSS commercial workloads in shared-memory
multiprocessors, Third International Symposium on High-
Performance Computer Architecture (HPCA), Jan. 1997.
[14] Bradford, J.P. and J. Fortes, Performance and
Memory-Access Characterization of Data Mining
Applications, Workload Characterization: Methodology
and Case Studies, Dallas, TX, Nov. 1998.
[15] Kim, J.-S., X. Qin, and Y. Hsu, Memory
Characterization of a Parallel Data Mining Workload,
Workshop on Workload Characterization: Methodology
and Case Studies, Dallas, TX, Nov. 1998.
[16] Michie, D., D.J. Spiegelhalter, and C.C. Taylor,
Machine Learning, Neural and Statistical Classification
(Ellis Horwood, 1994).
[17] Quinlan, J., C4.5 Programs for Machine Learning
(Morgan Kaufmann, 1993).
[18] Domingos, P. and M. Pazzani, Beyond
independence: Conditions for optimality of the simple
Bayesian classifier, 13th Internaltional Conference on
Machine Learning, 1996.
[19] MacQueen, J, Some Methods for Classification and
Analysis of Multivariate Observations, 5th Berkeley
Symposium on Mathematical Statistics and Probability,
1967.
[20] Bezdek, J.C., Pattern Recognition with Fuzzy
Objective Function Algorithms (Plenum Press, New York,
1981).

[21] Zhang, T., R. Ramakrishnan, and M. Livny, BIRCH:
An efficient data clustering method for very large
databases, SIGMOD, June 1996.
[22] Eisenstein, D.J. and P. Hut, HOP: A New Group
Finding Alogrithm for N-Body Simulations, Journal of
Astrophysics, 1998, 498: pp. 137-142.
[23] Agrawal, R., et al., Fast Discovery of Association
Rules, Advances in Knowledge Discovery and Data
Mining, 1995.
[24] Intel, C., VTune Performance Analyzer,
http://www.intel.com/software/products/vtune/.
[25] OpenMP, OpenMP: Simple, Portable, Scalable SMP
Programming, http://www.openmp.org/.
[26] IBM, IBM synthetic data generation code,
http://www.almaden.ibm.com/software/quest/Resources/in
dex.shtml.
[27] Bryan, G., T. Abel, and M. Norman, Achieving
Extreme Resolution in Numerical Cosmology Using
Adaptive Mesh Refinement: Resolving Primordial Star
Formation, SuperComputing, Nov. 2001.

