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ABSTRACT 
 
Data mining has become one of the most essential tools in 
diverse fields. The increases in data sizes and algorithmic 
complexities require the computational power of chip to 
increase even further. In this paper, we present detailed 
characteristics from the hardware and software 
perspectives for a set of representative data mining 
programs. We first design MineBench, a benchmarking 
suite containing representative data mining applications 
from multiple categories including two classification, two 
association rule mining, and four clustering applications. 
We evaluate the MineBench applications on an 8-way 
Shared Memory Parallel (SMP) machine and analyze 
their important performance characteristics. During the 
evaluation, the input datasets and the number of 
processors used are varied to measure the scalability of 
the applications in our benchmark suite. We present the 
results based on characteristics such as scalability, I/O 
complexity, fraction of time spent in the OS mode, and 
communication/synchronization overheads. This 
information can aid designers of future systems as well as 
programmers of new data mining algorithms to achieve 
better system and algorithmic performance. 
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1.  Introduction 
 
As the data sizes accumulated from various fields are 
exponentially increasing, data mining techniques that 
extract information from huge amount of data have 
become popular in commercial and scientific domains, 
including marketing, customer relationship management, 
scoring and risk management, recommendation systems, 
fraud detection, cosmology simulation, climate modeling, 
bioinformatics, drug discovery, intrusion detection, World 
Wide Web, etc [1]. 
 
*  From Intel Corporation. 

     As the amount of data collected increases, we will 
need to utilize even more complicated data mining 
applications. However, the performance of computer 
systems is improving at a slower rate compared to the 
increase in demand for data mining applications. Recent 
trends suggest that the system performance (data based on 
memory and I/O bound workloads like TPC-H) has been 
improving at a rate of 10-15% per year, whereas, the 
volume of data that is collected doubles every year. 
Having observed this trend, researchers have focused on 
efficient implementations of different data mining 
algorithms. Among these, a major approach taken is the 
development of parallel and distributed versions of such 
algorithms. While these algorithms have been efficiently 
improved, the basic characteristics that define these 
algorithms remain under studied.  Such information in 
turn can be utilized during the implementation of the 
algorithms and the design/setup of the computing 
systems. Understanding the performance bottlenecks is 
essential not only for processor designers to adapt their 
architectures to data mining applications, but also for 
programmers to adapt their algorithms to the revised 
requirements of applications and architectures. 
    In this paper, we try to investigate data mining 
applications to identify their characteristics in a sequential 
as well as a parallel execution environment. We first 
establish a benchmarking suite of applications, called 
MineBench, that encompass algorithms commonly used 
in data mining. We believe that analyzing the behavior of 
a complete benchmarking suite will certainly give a better 
understanding of the underlying bottlenecks for data 
mining applications. Such studies have been done for 
other fields, for instance, SPEC [2], TPC [3], SPLASH 
[4], MediaBench [5] are well known benchmarks built 
through such an effort. Then, we analyze the architectural 
properties of these applications, and also study their 
scalabilty with respect to these characteristics. We 
analyze the characteristics of the applications in Shared 
Memory Parallel (SMP) machine. Despite their limitation 
on scalability, SMPs have become the most common 
parallel computing type in industry due to their simplicity. 
By analyzing the application characteristics in this 
representative multiprocessor system, we provide an 
insight into the parallel applications, which can be 



potentially helpful when developing parallel data mining 
algorithms on SMPs. 
     The rest of the paper is organized as follows. In the 
next section, we overview the related work. In Section 3, 
we discuss the data mining applications that are included 
in our benchmarking suite. Section 4 presents the 
evaluation methodology. The characteristics of our 
benchmark applications are presented in Section 5. 
Section 6 summarizes the results. 
 
 
2.  Related Work 
 
A great number of efficient data mining technologies have 
been developed in the recent years [1, 6]. In order to meet 
the demand in performance, many parallel data mining 
algorithms have also been developed. In the past decade, 
most research on parallel data mining [1, 7, 8] has been 
focused on Distributed Memory Parallel machines due to 
its capability for massive parallelism. However, Shared 
Memory Parallel machines are becoming the dominant 
types of parallel machines in industry because of its 
simplicity and low to medium degree of parallelism 
besides its nominal price. A few parallel algorithms on 
SMPs have been proposed in [9, 8]. 
     Similar performance characterization work of database 
workloads is seen in [10, 11], and specifically targeted for 
SMPs in [12, 13]. Performance characterization of 
individual data mining algorithm has been done in [14, 
15], where they focus on the memory and cache behaviors 
of a decision tree induction program. However, we 
believe that analyzing the behaviors of a complete data 
mining benchmarking suite will certainly give a better 
understanding of the underlying bottlenecks for data 
mining applications. 
 
 
3.  MineBench Application Suite 
 
We first establish MineBench, a benchmarking suite 
containing data mining applications. The selection 
principle is to include categories and applications that are 
commonly used in industry and are likely to be used in 
the future, thereby achieving a realistic representation of 
the existing applications. MineBench can be used by both 
programmers and processor designers for efficient system 
design. MineBench has 8 applications from three of the 
categories: classification, association rule mining (ARM), 
and clustering. The applications as well as important 
characteristics of the applications are listed in Table 1, 
which presents the applications, the category they belong 
to, a short description of the applications, and the 
programming language used to implement it. 
 
3.1 Classification Programs 
 
A classification algorithm is to use a training dataset to 
build a model such that the model can be used to assign  
 

Table 1. MineBench applications. 
 
Algorithms Category Description Lang. 
ScalParC Classification Decision tree classifier  C 
Naïve 
Bayesian 

Classification Statistical classifier based 
on class conditional 
independence 

C++ 

K-means Clustering Partitioning method C 
Fuzzy K-
means 

Clustering Fuzzy logic based K-
means 

C 

BIRCH Clustering Hierarchical method C++ 
HOP Clustering Density-based method C 
Apriori ARM  Horizontal database, level-

wise mining based on 
Apriori property 

C/C++ 

Eclat ARM  Vertical database, break 
large search space into 
equivalence class 

C++ 

 
unclassified records into one of the defined classes. 
Classification has applications in diverse fields such as 
retail marketing, fraud detection, and design of 
telecommunication service plans [1].  
     ScalParC is an efficient and scalable variation of 
decision tree classification [7]. The decision tree model is 
built by recursively splitting the training dataset based on 
an optimal criterion until all records belonging to each of 
the partitions bear the same class label. Among many 
classification methods proposed over the years, decision 
trees are particularly suited for data mining, since they are 
built relatively fast compared to other methods, obtaining 
similar or often better accuracy [16], and easy to interpret 
[17].  
     Bayesian classifiers are statistical classifiers based on 
Bayes’ Theorem. They predict the probability that a 
record belongs to a particular class. A simple Bayesian 
classifier, called Naive Bayesian classifier [18], is 
comparable in performance to decision trees and exhibits 
high accuracy and speed when applied to large databases. 
 
3.2 Clustering Programs 
 
Clustering is the process of discovering the groups of 
similar objects from a database to characterize the 
underlying data distribution. It has wide applications in 
market or customer segmentation, pattern recognition, 
biological studies, and spatial data analysis [1]. Generally, 
clustering algorithms can be classified into four 
categories: partitioning-based, hierarchical-based, 
density-based, and grid-based.  
     K-means [19] is a partition-based method and is 
arguably the most commonly used clustering technique. 
Given the user-provided parameter k, the initial k cluster 
centers are randomly selected from the database. Then, K-
means assigns each object to its nearest cluster center 
based on some similarity function. Once the assignments 
are completed, new centers are found by the mean of all 
the objects in each cluster. This process is repeated until 
two consecutive iterations generate the same cluster 
assignment. 



     K-means assigns a data object to be not to be a 
member of a particular cluster. The Fuzzy K-means 
algorithm [20] relaxes this condition by assuming that a 
data object can have a probability of membership in each 
cluster. For each object, the sum of the probabilities to all 
clusters equals to 1. Compared to K-means, the 
calculation for the fuzzy membership results in higher 
computational cost. However, the flexibility of assigning 
objects to multiple clusters might be necessary to generate 
better clustering qualities. 
     BIRCH [21] is a hierarchical clustering method that 
employs a hierarchical tree to represent the closeness of 
data objects. BIRCH first scans the database to build a 
clustering-feature (CF) tree to summarize the cluster 
representation. Then, a selected clustering algorithm, such 
as K-means, is applied to the leaf nodes of the CF tree. 
For a large database, BIRCH can achieve good 
performance and scalability. It is also effective for 
incremental clustering of incoming data objects. 
     Density-based methods grow clusters according to the 
density of neighboring objects or according to some other 
density function. HOP [22], originally proposed in 
astrophysics, is a typical density-based clustering method. 
After assigning an estimation of its density for each 
particle, HOP associates each particle with its densest 
neighbor. The assignment process continues until the 
densest neighbor of a particle is itself. All particles 
reaching this state are clustered as a group. HOP has 
diverse applications in molecular biology, geology, and 
astronomy. 
 
3.3 Association Rule Mining (AMR) Programs 
 
Association rule mining is to find the set of all subsets of 
items or attributes that frequently occur in database 
records. ARM can discover interesting association 
relationships among the large number of business 
transaction records. This can aid business decision-
making processes, such as catalog design, cross-
marketing, and loss-leader analysis [1].  
     Apriori [23] is arguably the most influential ARM 
algorithm. It explores the level-wise mining of Apriori 
property: all nonempty subsets of a frequent itemset must 
also be frequent. At the kth iteration (for k > 1), it forms 
frequent (k+1)-itemset candidates based on the frequent k-
itemsets and  scans the database to find the complete set 
of frequent (k+1)-itemsets,  Lk+1. To improve the 
efficiency, a hash-based technique is used to reduce the 
size of the candidate set.  
     Eclat [8] uses a vertical database format. It can 
determine the support of any k-itemset by simply 
intersecting the id-list of the first two (k-1)-subsets that 
share a common prefix. It breaks the search space into 
small, independent, and manageable chunks. Efficient 
lattice traversal techniques are used to identify all the true 
maximal frequent itemsets. 
 
 
 

3.4 Parallel Implementation 
 
As mentioned in the earlier sections that part of our goal 
is to test the scalability of data mining applications on 
SMPs, parallel versions of our benchmark applications are 
also provided. We include sequential (serial/single 
processor) implementation and evaluation results for all 
applications. Experimental results for 5 parallel 
applications out of the 8 benchmark applications have 
been provided: ScalParC (Classification), K-means, 
Fuzzy K-means, HOP (Clustering), and Apriori (ARM). 
We chose these applications since these parallel 
algorithms are commonly found in the literature. 
ScalParC is parallelized on SMPs using the scheme 
presented in [9]. Simple data parallelism is exploited to 
parallelize K-means, Fuzzy K-means, and HOP. We 
implement parallel Apriori based on the Common 
Candidate Partitioned Database (CCPD) strategy 
proposed in [8].  
 
 
4. Evaluation methodology 
 
We study each application both from the algorithmic and 
the system perspective. Routines within each application 
are analyzed in detail both from the functional and 
architectural granularity to identify the key parameters in 
each algorithm. 
 
4.1 Hardware Platform 
 
We conduct our evaluation on an Intel IA-32 
multiprocessor platform, which consists of an Intel Xeon 
8-way Shared Memory Parallel (SMP) machine running 
Linux operating system, a 4GB shared memory and 1024 
KB L2 cache for each processor. Each processor has 
16KB non-blocking, integrated L1 instruction and data 
caches. The number of processors is varied to study the 
scalability. 
 
4.2 Software Tools 
 
In all the experiments, we use VTune Performance 
Analyzer [24] for profiling the functions within our 
application, and for measuring their breakdown execution 
times. VTune counter monitor provides a wide assortment 
of metrics. We look at different characteristics of the 
applications: execution time, fraction of time spent in the 
OS space, communication/synchronization complexity, 
and I/O complexity.  
     In parallel implementations of the applications, we use 
OpenMP pragmas [25]. OpenMP is a specification for a 
set of compiler directives, library routines, and 
environment variables that can be used to specify shared 
memory parallelism. Due to its simplicity, OpenMP is 
quickly becoming one of the most widely used 
programming styles for SMPs. In SMPs, processors 
communicate through shared variables in the single 
memory space. Synchronization is used to coordinate 



processes. VTune provides the aggregate time spent on 
different types of pragmas, so that we can accurately 
measure the time spent on synchronization. 
 
4.3 Dataset Characteristics 
 
Input data is an integral part of the data mining 
applications. For ScalParC and Naïve Bayesian, we use a 
synthetic dataset, F26-A32-D250K, generated by the IBM 
Quest data generator [26]. The notation F26-A32-D250K 
denotes a dataset with Function 26, Attribute size 32, and 
Data comprising of 250,000 records. For Apriori and 
Eclat, we also use a synthetic dataset, T20-I6-D2000K, 
from IBM Quest data generator. This notation denotes the 
dataset contains 2,000,000 transactions, the average 
transaction size is 20, and the average size of the maximal 
potentially large itemsets is 6. The number of items is 
1000 and the number of maximal potentially large 
itemsets is 2000. For HOP and BIRCH, we use a real data 
from a cosmology application, ENZO [27], having 
3,932,160 particles. We use a real image database for K-
means and Fuzzy K-means. This database consists of 
17,695 scenery pictures. Each picture is represented by 
two features: color and edge. We use the dataset 
represented by edge in our experiment. Since the 
clustering quality of K-means methods highly depends on 
the input parameter k, we perform both K-means with ten 
different k values ranging from 4 to 13. The timing results 
provided in this paper are the accumulated time for the ten 
runs. 
 
 
5.  Program Characteristics  
 
In this section, we analyze several characteristics of 
MineBench programs. For each characteristic, we analyze 
how the results vary when we change the number of 
processors used in the execution. Our measures of interest 
include the overall program execution time, the operating 
system overheads, I/O times and synchronization times. 
The benefits and drawbacks of using a shared memory 
model for our data mining algorithms are also discussed. 
 
5.1 Execution Time 
 
Table 2 shows the application execution times on 1 
processor and speedups with respect to 1 processor case. 
We measure the scalability of the parallel applications by 
executing them on 1, 4 and 8 processors. The 
performance numbers for the 2-processor case is not 
presented in our paper due to the fact that there is trivial 
(or in some cases, none) improvement in performance 
when it is executed on 2 processors. 
     The best speedup, 6.06 on 8 processors, is seen in 
ScalParC. The balanced data partition on to processors 
minimizes the memory access contention for concurrent 
read-write operations on the shared variables. If data is 
evenly distributed, each processor is able to work 
independently (faster) by accessing only its respective 

data block in the memory without requiring access to 
memory blocks of other processors. HOP follows 
ScalParC in terms of the achieved speedups. Apriori has 
limitations when extended to SMPs. This is due to the 
significant amount of atomic access to the shared hash-
tree structure and the nature of unbalanced transaction 
data. 
 
Table 2. Execution times for applications on 1 
processor (in seconds) and speedups respect to 1 
processor case.  P1, P4, P8 represent 1, 4 and 8 
processor cases. 
 

Program P1(s) P4 P8 

HOP 52.7 1.92 6.06 

K-means 12.9 3.9 4.96 

Fuzzy K- means 146.8 3.44 5.42 

BIRCH 31.7 - - 

ScalParC 110.6 3.88 5.12 

Bayesian 25.1 - - 

Apriori 102.7 2.66 3.36 

Eclat 81.5 - - 

 
5.2 Operating System Overheads 
 
In any program, the CPU utilization is split into operating 
system (OS) and user space. The OS overheads include 
factors like system calls (for process/thread management, 
invoking locks, handling hardware interrupts), and 
allocation of intermediate system buffers during program 
execution. In Figure 1, we present the OS component (as 
a percentage of total execution time) of each individual 
application. When the number of processors is 1, the 
operating system overheads are minimal. The maximum 
overhead (1.7%) on 1 processor is seen for BIRCH. When 
the number of processors deployed is increased, the OS 
component increases drastically due to the parallelization 
overheads. Under the OpenMP programming 
environment, each OpenMP (omp) directive adds extra 
cycles of overhead. Program locks (which are basically 
system locks) used in parallelization also contribute to the 
OS overheads. Collectively, the more processors, the 
more OS overheads. Among the applications, K-means 
has the worst overhead, 40%. It helps explain the poor 
scalability of K-means. This is as a result of the omp 
directives and locks during the parallelization of K-
means. 
 
5.3 I/O Time 
 
In general, I/O is a key component that could affect the 
overall performance of a system. We study the time for 
performing I/O as a percentage of the overall execution 
time in Figure 2. It is seen that the overheads arising from 
I/O operations in MineBench are small except for 
Bayesian. For Bayesian, data is read as ASCII characters 
one by one, whereas for ScalParC (another classification 



algorithm), data is read in bulk string mode (less read 
operation overheads). These results highlight the 
computation-intensive nature of our benchmark. 
 
5.4 Communication/Synchronization Overheads 
 
In a shared memory model, the inter-processor 
communication is achieved by accessing shared variables 
(which in turn are shared locations in the memory). This 
could be a considerable bottleneck if the shared variable 
is locked by another processor, in which case the 
requesting processor must wait until the lock is released. 
Moreover, during parallel execution, there are execution 
breakpoints where all processors need to synchronize 
their data values for all their local/shared variables. This 
again, could be another bottleneck. All such overheads are 
reflected in the synchronization costs shown in Figure 3. 
When using one processor, the synchronization overheads 
are negligible due to no inter-processor communication. 
In our benchmark, the synchronization overheads increase 
when more processors participate because shared and 
private variables arise. It is seen that for all parallel 
applications, the average synchronization time is just 
0.14% of the overall execution time. This implies that the 
idle time spent in synchronization is very less and the 
CPU is very well utilized for mining information from the 
input data. 
 
 
 

6.  Conclusion 
 
In this paper, we introduce and evaluate MineBench, a 
benchmarking suite for data mining applications. It 
contains 8 representative applications: two association 
rule mining algorithms, two classification algorithms, and 
four clustering algorithms. We have studied important 
characteristics of the applications when executed on an 8-
way SMP machine. Our results indicate that usually the 
OS overheads, the synchronization overheads, and the I/O 
time are usually small in MineBench applications. These 
results indicate that improvements in the performance of 
processors are likely to have a significant impact on the 
overall performance of data mining systems. In addition, 
techniques, like prefetching, should also improve the 
performance of the processor considerably. To improve 
the performance of their applications, system designers as 
well as programmers can utilize the characteristics of 
MineBench and achieve better system performance. 
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