Video Programming with Mode 13h. From http://www.frontiernet.net/~fys/faq/gen1.txt

Mode 13h is so widely used for graphics applications in DOS because it

is very easy to use. The screen is constantly being redrawn by the

video card. To affect what the card draws, it is necessary to write to

the screen buffer. The screen buffer in mode 13h is always at

segment:offset = A000:0000. Thus, to set up drawing directly to the

video buffer, this is what you'd most often first do:

 ;Change the video mode to 13h

 xor ah, ah ;VIDEO Function 00h: Change screen

 mov al, 13h ;Put the desired graphics mode into AL

 int 10h ;Call VIDEO

 ;Prepare for writing to the video buffer

 mov di, 0a000h ;Put the video segment into DI

 mov es, di ; so it can easily be put into ES

 xor di, di ;Start writing at coordinates (0,0)

12.2 WRITING PIXELS TO THE SCREEN

Why is Mode 13h so popular? To understand, you must know a few basic

facts. In Mode 13h, the screen is 320 by 200, or 320 pixels across and

200 pixels down. In each pixel, there's a possibility of 256 colors,

which can be fit into one byte. Thus, 320*200*1 = 64000 bytes, about

the size of one segment. Think of the screen as an array of colors.

The first row takes up addresses A000:0000 to A000:013F (decimal 319),

the second row takes up addresses A000:0140 to A000:027F (decimal 639),

and so on. To plot a pixel, assuming ES=A000:

 ;Plot a pixel in video mode 13h, where

 ;PixelAddress = (320 * Y) + X

 mov ax, 320 ; Prepare for the multiplication

 mul [Y] ; Assuming that Y is defined in the data segment

 ; earlier in the program

 mov di, ax ; Put in into the pointer to the offset of ES

 add di, [X] ; Assuming that X is defined in the data segment

 ; earlier in the program

 mov al, [Color] ; Assuming that Color is defined in the data

 ; segment earlier in the program

 stosb ; Write it to the screen!

See how easy that was? Something to remember is that it is zero-based.

The upper-left corner is (0,0), and the lower-right is (319,199). A

complete TASM Ideal mode procedure might look something like this (it

assumes that the video card is already set to mode 13h):

PROC WritePixel BASIC ; Or whatever language you might want to link

 ; it to

 USES es, di ; It's always a good idea to preserve ES and DI

 ARG X:word, Y:word, Color:BYTE

 mov di, 0a000h ; Put the video segment into DI

 mov es, di ; so it can easily be put into ES

 mov ax, 320 ; Prepare for the multiplication

 mul [Y] ; Offset pointer by the Y value passed in

 mov di, ax ; Put in into pointer to the offset of ES

 add di, [X] ; Offset the pointer by the X value passed in

 mov al, [Color] ; Put color to be written to the screen in AL

 stosb ; Write it to the screen!

 ret

ENDP WritePixel

To write a horizontal line, just put the length in CX, and replace the

STOSB with a REP STOSB. Writing a vertical line is only a little

trickier. Observe the following TASM Ideal mode procedure:

PROC VerticalLine BASIC ; Or whatever language you might want to link

 ; it to

 USES es, di ; It's always a good idea to preserve ES and

 ; DI

 ARG X:word, Y:word, Color:BYTE, Length:word

 mov di, 0a000h ; Put the video segment into DI

 mov es, di ; so it can easily be put into ES

 mov ax, 320 ; Prepare for the multiplication

 mul [Y] ; Offset the pointer by the Y value passed in

 mov di, ax ; Put in into the pointer to the offset of ES

 add di, [X] ; Offset the pointer by the X value passed in

 mov al, [Color] ; Put the color to be written to the screen

 ; in AL

 mov cx, [Length] ; Prepare for the loop

YLoop:

 stosb ; Write it to the screen!

 add di, 319 ; Move down one row (DI has already advanced

 ; once because of the STOSB, thus the 319)

 loop YLoop

 ret

ENDP VerticleLine

Observe how there is a tight loop that moves DI down one row each

iteration.

In short, the easiest way to write directly to the Mode 13h video buffer

is to think of the screen as just a 320 by 200 array of bytes, starting

at A000:0000.

