EE2007
Tutorial Notes
Prepared by Pan Yan

What are we going to do with the UART?

· Transmit or receive data – Continuous data stream
· Control the protocol parameters – Initialization
· [image: image1.png]Control the baud rate - Initialization
· Handshaking – Checking & Asserting
Registers for Serial Port (IO Port, Not CPU Registers)
Eight I/O bytes are used for each UART to access its registers.
The switch bit DLAB can be found in the line control register LCR as bit 7 at I/O address base + 3.
	Register to port map

	
	DLAB = 0
	DLAB = 1

	I/O port
	Read
	Write
	Read
	Write

	Base
(3F8h)
or
(2F8h)
	RBR☆
Receiver buffer
	THR☆
Transmitter holding
	DLL (divisor latch LSB)

	base + 1
	IER
interrupt
enable
	IER
interrupt
enable
	DLM (divisor latch MSB)

	base + 2
	IIR
Interrupt identification
	FCR
FIFO control
	IIR
Interrupt identification
	FCR
FIFO control

	base + 3
	LCR☆ line control

	base + 4
	MCR☆ modem control

	base + 5
	LSR☆
Line status
	factory
test
	LSR
Line status
	factory
test

	base + 6
	MSR☆
Modem status
	not
used
	MSR
Modem status
	not
used

	base + 7
	SCR scratch

The communication between the processor and the UART is completely controlled by the 12 registers in the I/O address area.

RBR : Receiver buffer register (RO) – Data Buffer
THR : Transmitter holding register (WO) – Data Buffer
MSR: Modem status register (RO) – Status - Handshaking
MCR: Modem control register (R/W) – Control - Handshaking
LSR: Line status register (RO) - Status – Error and Transmission
LCR : Line control register (R/W) － Control - Initiallization
	LCR : line control register

	Bit
	Value
	Comment

	0,1
	Bit 1
	Bit 0
	Data word length

	
	0
	0
	5 bits

	
	0
	1
	6 bits

	
	1
	0
	7 bits

	
	1
	1
	8 bits

	2
	0
	1 stop bit

	
	1
	1.5 stop bits (5 bits word)
2 stop bits (6,7 or 8 bits word)

	3,4,5
	Bit 5
	Bit 4
	Bit 3
	

	
	X
	x
	0
	No parity

	
	0
	0
	1
	Odd parity

	
	0
	1
	1
	Even parity

	
	1
	0
	1
	High parity (stick)

	
	1
	1
	1
	Low parity (stick)

	6
	0
	Break signal disabled

	
	1
	Break signal enabled

	7
	0
	DLAB : RBR, THR and IER accessible

	
	1
	DLAB : DLL and DLM accessible

	LSR : Line status register
	MSR : Modem status register
	MCR : Modem control register

	Bit
	Comment
	Bit
	Comment
	Bit
	Comment

	0
	Data available
	0
	delta Clear to send
	0
	Data terminal ready

	1
	Overrun error
	1
	delta Data set ready
	1
	Request to send

	2
	Parity error
	2
	trailing edge Ring indicator
	2
	Auxiliary output 1

	3
	Framing error
	3
	delta Carrier detect
	3
	Auxiliary output 2

	4
	Break signal received
	4
	Clear to send
	4
	Loopback mode

	5
	THR is empty
	5
	Data set ready
	5
	Autoflow control

	6
	THR empty, line idle
	6
	Ring indicator
	6
	Reserved

	7
	Erroneous data in FIFO
	7
	Carrier detect
	7
	Reserved

Refer to Sect#22.3 of AoALP for Serial Port Example Programs
Baud & Bits Per Second (BPS)
· The two most corrupted terms in telecommunications.
· Baud is the number of signal level changes per second in a line, regardless of the information content of those signals.
· Bits per second is the rate of transfer of information bits.
· The ratio of BPS to baud depends on the information coding scheme that you are using.
· For example, each character in asynchronous RS-232 coding includes a start and stop bit that are not counted as information bits, so the BPS rate is actually less than the baud rate.
· Present-day modems, on the other hand, use a set of discrete amplitude and phase values to encode multiple bits with each signal change. This technique, along with compression schemes and other tricks, allows BPS rates of 14,400 and higher on lines that support relatively low signal change rates (about 2400 baud for phone lines).

Devisor Setting: Divisor value = Input frequency / (baud rate * 16)
Interrupt of 8086/8088
· The 8086 series of microprocessors has an Interrupt Vector Table situated at 0000:0000 which extends for 1024 bytes.
· The Interrupt Vector table holds the address of the Interrupt Service Routines (ISR), all four bytes in length.
· This gives us room for the 256 Interrupt Vectors.
	INT (Hex)
	IRQ
	Common Uses

	00 - 01
	Exception Handlers
	-

	02
	Non-Maskable IRQ
	Non-Maskable IRQ (Parity Errors)

	03 - 07
	Exception Handlers
	-

	08-0F
	Hardware IRQ0~7
	System Timer, Keyboard,
Serial Comms, Sound Card,
FD Ctrl, Parallel Comms.

	10 - 6F
	Software Interrupts
	(DOS INT, e.g. 21H)

	70 - 77
	Hardware IRQ8~15
	Real Time Clock, Mouse,
HD Drive, Co-Processor

	78 - FF
	Software Interrupts
	-

Go online for BIOS and DOS ISR list: http://ee2007.cjb.net/onlinepages.html
Example Description
Int 21/AH=01h: READ CHARACTER FROM STDIN, WITH ECHO

AH = 01h

Return: AL = character read

Notes: ^C/^Break are checked, and INT 23 executed if read. …
CODE:
MOV AH, 01h

INT 21H

MOV DL, AL
Parallel Port is more straight-forward

Port Register value mapped directly to connector pins (0V or 5V)
	Bit
	Data Port (378h)
	Status Port (379h)
	Control Port (37Ah)

	
	Func.
	Pin.
	Func.
	Pin
	Func.
	Pin

	D0
	Data0
	2
	Not Used
	-
	STROBE
	1

	D1
	Data1
	3
	Not Used
	-
	Auto FD
	14

	D2
	Data2
	4
	Not Used
	-
	/INIT
	16

	D3
	Data3
	5
	/ERROR
	15
	/SLCT_IN
	17

	D4
	Data4
	6
	/SLCT
	17
	IRQ7
	-

	D5
	Data5
	7
	PE
	12
	Not Used
	-

	D6
	Data6
	8
	/ACK
	10
	Not Used
	-

	D7
	Data7
	9
	/BUSY
	11
	Not Used
	-

ComRead
proc

Push
dx

Call
GetLCRCom

Push
ax
;Save DLAB.

And
al, 7fh
;Select normal ports.

Call
SetLCRCom
;Write LCR to turn off DLAB
WaitForChar:

Call
GetLSRCom
;Get LSR Register

Test
al, 00000001b ;Data Available?

Jz
WaitForChar
;Loop until data available.

Mov
dx, comport
;Read from the input port.

In
al, dx

Mov
dl, al
;Save character

Pop
ax
;Restore DLAB

Call
SetLCRCom
;Write it back to LCR.

Mov
al, dl
;Restore output character.

Pop
dx

ret

ComRead
endp

ComWrite
proc

Push
dx

Push
ax

Mov
dl, al
;Save character to output

Call
GetLCRCom
;Switch to output register.

Push
ax
;Save divisor latch access bit.

And
al, 7fh
;Select normal i/o ports

Call
SetLCRCom
; rather than divisor reg.

WaitForXmtr:

Call
GetLSRCom
;Read LSR for xmit empty bit.

Test
al, 00100000b ;Xmtr buffer empty?

Jz
WaitForXmtr
;Loop until empty.

Mov
al, dl
;Get output character.

Mov
dx, ComPort
;Store it in the ouput port to

Out
dx, al
; get it on its way.

Pop
ax
;Restore divisor access bit.

Call
SetLCRCom

Pop
ax

Pop
dx

Ret

ComWrite
endp
ComGetLCR
proc

;Return LCR value in AL.

Push
dx

Mov
dx, comLCR
;Point at LCR register.

In
al, dx
;Read and return LCR value.

Pop
dx

Ret

ComGetLCR
endp

ComSetLCR
proc

;Write a new value to the LCR.

Push
dx

Mov
dx, comLCR
;Point at LCR register.

Out
dx, al
;Write value in AL to the LCR.

Pop
dx

Ret

ComSetLCR
endp

[To Read From a Port]

MOV DX, portnum

IN AL, DX

[To Write to a Port]

MOV AL, data

MOV DX, portnum

OUT DX, AL

Email : panyan@gmail.com
 Go to http://ee2007.cjb.net for more on EE2007 - 1 -

