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Abstract— Language is a powerful tool that enables humans
and robots to interact without the need for complex graphical
interfaces. Statistical techniques for interpreting the meaning of
utterances in complex domestic environments, however, remain
computationally intensive and are prone to error. Herein we
present a model for language understanding that uses parse
trees and environment models to infer both the structure
and the meaning of probabilistic graphical models for symbol
grounding. This model, called the Hierarchical Distributed
Correspondence Graph (HDCG), exploits information about
symbols that are expressed in the corpus to learn rules that
describe how to construct graphical models that are faster to
search. In a comparative experiment, we observe an order of
magnitude improvement in the speed of probabilistic inference
over the Distributed Correspondence Graph (DCG) model.
We conclude with a discussion of potential applications in
rehabilitation and assistive robotics and future directions of
research.

I. INTRODUCTION

Ideas from robotics have the potential to improve the
quality of life for people with physical, cognitive, and visual
impairments by allowing them to navigate in, interact with,
and perceive their environment independent of human aids.
Recent investigations into networks for patient tracking [1]
and robot guided therapy [2], [3] show that we can improve
the efficiency and effectiveness of patient care through the
utilization of such technologies. Smart wheelchairs have been
proposed to address limited mobility and have been an active
area of research over the past three decades [4]. A barrier
to widespread adoption of smart wheelchairs is the way
in which we interact with such systems. Interfaces based
on haptic feedback [5], electrooculography [6], electroen-
cephalography [7], and recognition of facial gestures [8]
have been explored as improvements over manual control.
Natural language interfaces are another promising method
for human-robot interaction and control of cyber-physical
systems. Recognizing its importance, there has been an
increased focus on developing a capacity for robots to
understand natural language instructions in the context of
route direction following [9]–[13], map building [14], and
object manipulation [15], [16].

A key component of natural language interfaces is the
model for providing physical meaning for linguistic con-
stituents [17]. The Generalized Grounding Graph (G3)
model [15] exploits the hierarchical structure of language
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Fig. 1. An image of the initial state of a kitchen for a service robotics task.
The physical environment consists of one sink, fourteen plates, five mugs,
seven cups, one pitcher, one faucet, five spoons, six forks, four knives, one
soap dispenser and one robot (not pictured) for a total of forty-six objects.

to construct a probabilistic graphical model composed of
groundings (γ ∈ Γ), correspondences (φ ∈ Φ), phrases (λ ∈
Λ), and the physical environment (Ψ). The unknown ground-
ings are searched for values that maximize the product
of factors that represent a true correspondence to phrases
and connected groundings. The Distributed Correspondence
Graph (DCG) model [18] expands on this idea by assuming
conditional independence of grounding constituents to im-
prove the computational efficiency of probabilistic inference.
This model searches the unknown correspondences to max-
imize the product of factors ( f ) that evaluate the correlation
between phrases, groundings, and the physical environment:

argmax
Φ
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Duvallet et al. [19] applies the DCG model to infer

both environment maps and robot behaviors from natural
language utterances to control a robotic wheelchair in un-
known environments. Both of these models take a brute force
approach to constructing the probabilistic graphical models,
without considering whether or not a particular grounding,
relationship, or correspondence should be included or ex-
cluded from the search. This has important consequences on
the time required to the distribution of symbol groundings
and subsequently limits the scalability of natural language
interfaces to rudimentary tasks in simple environments.

In this paper, we explore the impact on computational
efficiency of a hierarchy of graphical models that reasons
over the structure of subsequent layers. Example applications
in service robotics demonstrate that we can improve the
scalability of algorithms for natural language understanding
by learning how to construct concise probabilistic graphical
models that are efficient to search with computational and



temporal constraints. We conclude with a discussion of the
potential impacts for natural language interfaces in service
robotics.

II. HIERARCHICAL DISTRIBUTED
CORRESPONDENCE GRAPHS

Consider the parse tree of the expression “pick up the
mug on the plate to the left of the sink” that is illustrated in
Figure 2 in the context of the environment depicted in Figure
1. When searching for the meaning of the expression with
the DCG model, each of the fifteen phrases in the utterance
must be searched for the set of correspondence variables that
maximize the product of factors with all possible groundings
from the physical environment. This means that the repre-
sentation of the physical environment in the DCG model has
a significant impact on the computational requirements of
probabilistic inference. Commonly, environments have nu-
merous objects, regions, and relationships that are irrelevant
to the meaning of the expression and can be excluded from
the search process. In the aforementioned example, we can
interpret the need to consider certain relationships between
a robot, a mug, a plate, and a sink, but cannot identify the
specific robot, mug, plate, or sink among multiple objects of
the same class without incorporating physical properties of
the environment. Likewise, we can infer that the relationships
between the robot and the soap dispenser, silverware, and the
pitcher are irrelevant to the goal conditions of the request. For
the environment in Figure 1, we may only need to consider
twenty-one of the forty-six objects and a subset of the regions
and constraints that involve those objects to understanding
the meaning of the robot instruction. Efficient techniques for
determining the correct resolution and representation of the
physical world for understanding the meaning of an utterance
remains an open question in human-robot interaction.

VB RP DT NN IN NN IN DT NN TODT NN IN DT NN

PRT NP NP NP NP NP

PP

NP

PP

NP

PP

NP

PP

NP

VP

pick up the cup on top of theplate to the left of the sink

Fig. 2. The parse tree for the robot instruction “pick up the cup on top of
the plate to the left of the sink”.

Our approach to inferring the most likely representation
of a search space for language understanding applies the

DCG model hierarchically. At higher levels in the hierarchy,
models are used to infer rules (R) that are used to construct
the space of groundings for subsequent models. At the base
of the hierarchy, the space of groundings is constructed from
the distribution of rules inferred by the previous layer.

Γ→ Γ(R) (2)

Figure 3 illustrates how rules are used to filter the space
of region groundings for each phrase in the HDCG model.
In this example, three object rules (R1, R2, and R3) and
two region type rules (R4 and R5) are expressed to permit
only region types LEFT and ABOVE and objects o2, o3,
and o5. These five rules permit the expression of six region
groundings (γ11, γ15, γ19, γ23, γ35, and γ39) and eliminate 362
region groundings from consideration. Rules are also applied
to filter object, relationship, and other types of groundings
for each phrase in a similar manner.
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Fig. 3. An illustration of how rules are used to filter the space of region
groundings. The space of regions groundings is formed by the intersection of
rules that permit objects and region types. In this example, the intersection
of three object rules and two region type rules allows six (γ11, γ15, γ19, γ23,
γ35, and γ39) of 368 region groundings to be expressed.

Mathematically, we introduce latent variables that repre-
sent the rules for constructing the space of groundings that
we integrate out to infer the most likely correspondence
variables. We model the likelihood of correspondences given
rules, groundings, language, and the physical world and
the likelihood of rules given groundings, language, and the
physical world as DCG models. The factors in each DCG
model are represented as log-linear models that are trained



from a corpus of labeled examples.
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Graphically, this model, which we call the Hierarchical

Distributed Correspondence Graph (HDCG), can be repre-
sented as illustrated in Figure 4. Inference occurs from top
to bottom, where a set of rules is inferred for constructing
the space of groundings for the subsequent model. The
lowest-level model contains the relationships in the physical
environment that we want to infer from the natural language
instruction. The search space of the highest-level model is
fixed from the assumptions of how to partition the search
spaces in subsequent models.

On the surface, it appears that we have made the model
more computationally complex by adding additional factors
and random variables for probabilistic inference. For infre-
quent expressions that require reasoning over relationships
between all objects in the physical environment, this would
be true. If the relationships between many objects in the
scene are irrelevant to the desired task, however, it is ben-
eficial to cull those random variables from the model that
infers the relationships between physical objects. Returning
to the original example, if we can remove considerations
of regions to the right, below, front, and back of objects we
can significantly reduce the number of relationships we need
to evaluate. Likewise, if we are able to remove background
objects that commonly appear in the kitchens (e.g., utensils,
pots, pans), the hierarchical variation of the model can
further eliminate many objects, regions, and relationships
from consideration.

III. EXPERIMENTS

To evaluate the predicted improvement in computational
efficiency, we compare the runtime of the DCG model
against that of the HDCG model. Each model is trained and
evaluated on the example corpus of the open-source H2SL
software package,1 which contains the meanings of thirty-
two instructions, such as “walk to the chair and the crate”
and “approach the front of the desk,” in a symbolic language
used to formulate problems for a trajectory planner. The
version of H2SL that is used in this experiment assumes
that objects are one of twenty-seven types, regions are
one of eight types (FRONT, BACK, LEFT, RIGHT, ABOVE,
BELOW, NEAR, or FAR), and constraints are one of two
types (INSIDE or OUTSIDE). The space of groundings for
each phrase is constructed from the possible objects, regions,
and constraints that can be represented in a particular world.
For example, each phrase in an instruction that assumes a
world composed of four physical objects could represent
four objects, thirty-two regions and/or over two thousand

1https://code.google.com/p/h2sl/
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Fig. 4. An illustration of the Hierarchical Distributed Correspondence
Graph composes of two models. A distribution of rules is inferred from the
language and environment model that is subsequently used to construct
models to infer the desired relationships between physical objects. The
search space for each model in this figure applies the assumptions described
in Section III for a world composed of four objects.

constraints. Inference is made efficient for the DCG model in
H2SL by throttling the space of groundings for each type of
phrase (e.g., constraints can only be groundings for verbs),
though a more general approach would consider any possible
constituent for a phrase grounding.

We assume that the HDCG model in this experiment is
composed of two models: a rule inference model and a
relationship inference model. We consider three types of
rules that permit or exclude objects, regions, and constraints
for rule inference in the HDCG model. The search space in
the rule inference model is composed of rules parameterized



by characteristics of the groundings, such as the type of
object, region, or constraint. In this experiment, we assumed
that there were twenty-seven object type rules, nine region
type rules, and three constraint type rules. Since the space
of rules is not a function of the environment, each phrase in
the rule inference model has thirty-nine factors. Examples for
training the rule inference model come from searching for the
minimum set of rules that permit all expressed groundings in
relationship inference examples. A set of rules is used to then
partition the search space of the relationship inference model,
whose constituents match those of the original DCG model.
The log-linear models for rule and relationship inference
used 5,244 and 3,316 features respectively.

IV. RESULTS

The experiment described in Section III was performed
on a Apple MacBook Pro with a 2.6 GHz Intel Core i7
processor using a single-threaded C++ implementation of the
DCG and HDCG models. Since the goal of this experiment
was to compare the runtime performance of probabilistic
inference, each model was trained and tested with each of
the thirty-two examples. We observed no difference in the
inferred symbols for both models in each of the thirty-
two example instructions. A beam width of four is used
to infer the meaning of each model and the top scoring
set of constituents from the rule inference model is used to
construct the relationship inference model. Table I presents
the average runtime and 95% confidence intervals for each
model, demonstrating that the HDCG model is approxi-
mately 34 times more efficient than the DCG model under
the assumptions of this experiment. The variation in average
runtime is more significant for the HDCG model than for the
DCG model because most of the computation of the DCG
model is centered on grounding the meaning of the single
verb phrases in each example.

TABLE I
MEAN INFERENCE TIME OF THE DCG AND HDCG MODELS WITH 95%

CONFIDENCE INTERVALS.

Model Mean Inference Time (sec)

DCG 0.485 (0.003)
HDCG 0.014 (0.002)

To better illustrate the behavior of the HDCG model,
we examine the rules and groundings inferred from the
sentence “approach the left of the table” in the context of
an environment composed of four objects. This example did
not exist in the training data and was evaluated in 0.023
seconds. The HDCG model inferred rules that permitted
objects of type ROBOT, TABLE, and UNKNOWN, regions of
type LEFT and UNKNOWN, and constraints of type INSIDE.
These six rules reduced the number of symbols that needed
to be considered for the noun and prepositional phrases and
verb phrases in the relationship inference model to five and
twenty-four, respectively. One symbol was inferred by the
relationship inference model, which correctly consisted of a

constraint of type INSIDE between the object of type ROBOT
and the region of type LEFT with respect to the object with
the type TABLE.

V. DISCUSSION

Improving the computational efficiency of models for
symbol grounding is important for the widespread adoption
of natural language interfaces for service robotics. The ability
to understand complicated utterances that describe non-trivial
tasks in complex environments is necessary to enable users of
assistive technologies to regain their independence in diverse
scenarios. We have demonstrated that the HDCG model can
improve the computational efficiency with which we can
infer the meaning of instructions by more than an order of
magnitude over the DCG model. Learning the properties of
search spaces in addition to the meaning of particular phrases
enables more efficient search by eliminating constituents
that do not influence the resulting distribution of symbols.
The ratio of this improvement over the DCG model is
proportional to the size of the search spaces and the sparsity
of constituents in annotated examples. In future work, we
will investigate the impact of more sophisticated hierarchies
of graphical models and their impact on probabilistic infer-
ence. Since the symbols required to represent instructions
(e.g., “get me the coffee mug from the cupboard”) may
differ significantly from those that are simply observations
of the physical environment (e.g., “there is a coffee mug
in the cupboard to the right of the refrigerator”), it may
be beneficial to learn a hierarchy composed of more than
two layers where rules for how to partition subsequent
spaces of rules are part of the inference procedure. We are
also exploring ways in which to infer (rather than assume)
the conditional independence assumptions and relationships
between constituents when constructing each probabilistic
graphical model, and migrating from semantic tags towards
learning objects from physical object properties (e.g. color,
mass, shape).

Advancements to natural language interfaces have many
applications in healthcare and assistive robotics beyond smart
wheelchairs. Natural language interfaces could be integrated
into wearable rehabilitation devices to allow non-expert
operators to control a wider range of therapies that simulate
common tasks. Efficient models for natural language under-
standing could also be inverted to provide realtime feedback
to users of rehabilitation devices and assist in perception
for the visually impaired. In future work, we plan to apply
the HDCG model for natural language understanding of
robot instructions and environment observations on a smart
wheelchair and evaluate the performance in the context of
assistive robotics tasks.
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