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Abstract— Home-based motion therapy assisted by a 

mechatronic device is a new alternative for patients that must 

undergo rehabilitation therapy but cannot regularly visit a 

health care center. A mechatronic rehabilitative device must 

include a sensing system that provides feedback and quantifies 

the effort required to move a limb. A simplified EMG-driven 

model was designed to address this need. The hypotheses were 

that 1) the sum of neural activation from the biceps and triceps 

muscles can show good correlation with forearm flexion–

extension movements, and 2) data from a motion sensor can be 

used to correct the prediction. The proposed EMG-driven model 

was tested in real time to determine the prediction accuracy of 

motion profiles provided by twelve healthy subjects. The model 

accuracy across subjects (97.4–98.6%) and across different types 

of exercises (97.9–98.4%) is within the required tolerance (96–

100%). The model replicates each subject’s motion trajectory 

with high correlation (0.99–1.00). The error of prediction is 

equal to the sensitivity of human joint positioning. Thus, 

reported results indicate that the simplified model has achieved 

the desired goal accuracy for rehabilitation purposes. 

Keywords— electromyography; EMG-driven model; elbow; 

biceps; triceps; rehabilitation. 

I. INTRODUCTION 

Joint related pathology can involve connective tissues, 

bones, nerves, muscles and tendons. Despite the variety of 

joint lesions, physical therapy modalities and postoperative 

therapeutic exercise play an essential role in the rehabilitation 

of joint injuries. Treatment includes (a) passive movements 

that are done by a therapist or with the help of a continuous 

passive motion (CPM) machine and (b) active programs that 

are performed at health care centres or at home. Although 

CPM machines and orthotics with rubber bands or springs are 

effective for joint rehabilitation, they are inappropriate for 

patients that are at the active-assistive stage of rehabilitation. 

Active-assistive range-of-motion exercises are generally 

prescribed for 3–4 weeks in total [1]. Despite the benefits of 

rehabilitation, many patients are not compliant with their 

rehabilitation program due to the need to travel long distances 

to medical centers, social responsibilities, forgetfulness, lack 

of motivation, boredom and/or lack of instant feedback [2]. 

Thus, a promising option for this group of patients may be a 

home-based therapy assisted by a mechatronic device (smart 

brace, orthotic or exoskeleton) that 1) maintains patient 
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motivation and 2) monitors and measures movements outside 

the clinical setting. To address these two needs, a mechatronic 

device should include a sensing system that provides feedback 

and quantifies the effort required to move a limb. A safe and 

noninvasive way to measure this effort is through 

electromyography (EMG) sensors. 

EMG-driven models quantify upper arm muscle activity in 

order to predict elbow motion and force [3–14]. A device 

employing such models can send predicted motion profiles as 

commands to the actuators to assist in the movement. 

Nevertheless, due to the complexity of the models, their 

associated long calibration processes and resulting low 

accuracy, the current approaches cannot be used for motion-

based rehabilitation. Thus, there is a need for a simple EMG-

driven model for elbow motion rehabilitation. 

The aim of this paper is to describe a test case of a proposed 

EMG-driven model for upper limb motion prediction. The 

validation process was designed for upper arm muscles that 

perform elbow flexion–extension (FE). As human limb 

positioning and movements are controlled by receptors with 

specific precision, the goal of this research is to predict the 

motion with sensitivity equal to that of human joint 

positioning. 

II. EMG-DRIVEN MODEL FOR ELBOW REHABILITATION 

A. Goals and Requirements 

The objective of this project is to validate a simplified 

EMG-driven model that predicts subject’s motion for people 

that need support when lifting their forearm during active-

assistive motion therapy. The sensitivity of joint position 

sensing for the elbow is 2 degrees [15]. This was confirmed by 

an expert who stated that elbow FE position error can vary 

between 2 and 5 degrees. As an elbow’s range of motion 

(ROM) is 0–130°, the error of limb positioning can be between 

96–98.5%, corresponding to 5° out of 130° (equivalent to 96% 

accuracy) and to 2° out of 130° (equivalent to 98.5% 

accuracy). 

The model was designed to deal with active-assistive 

motion therapy that requires slow elbow motion (average 

speed of 15°/s). At the end of a rehabilitation program, a 

patient should be able to lift at minimum a 1-kg load during 

the elbow FE motion. Thus, from the combination of the slow 
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speed and the 1 kg of load, it is concluded that the goal 

accuracy should be performed for low torques. For 

anthropometric data for males and females at the 95th 

percentile [16], the maximum torque required to overcome 

gravity is 11.3 Nm and 8.4 Nm respectively. Therefore, the 

proposed model is expected to accurately mimic a motion 

profile for a torque range of 0–11 Nm. 

B. Simplified EMG-Driven Model for Elbow Rehabilitation 

Over the past 5 years, several research groups have 

developed EMG-driven models that quantify upper arm 

muscle activity to predict elbow FE motion [3–14], see      

Table I. The models’ aim is to describe limb motion as a 

function of its EMG signal. At first, Hill-based models were 

using knowledge about the dynamics of individual 

sarcomeres within a fiber [17] to link extremity motions to 

their muscle activity [11]. Later, it was shown that a mapping 

technique (e.g. classification models, artificial neural 

networks and support vector machines) could achieve better 

accuracy than Hill-based models [12–14]. 

The error of prediction for models [3–14] was estimated 

to be in the range of 1.20–11.85%. As motion rehabilitation 

requires the accuracy of an EMG-driven model to be within 

96–98.5%, only three models [11,13,14] meet this 

requirement. Despite good accuracy, these models are 

restricted to specific exercise conditions: isometric 

contractions (i.e., stationary contraction of the muscles) [11], 

normal and high speeds [13] and limited ROMs [14]. 

Nevertheless, the proposed strategies were used as guidelines 

for selecting an optimal prediction technique for slow motion 

therapy. The proposed EMG-driven model combines the main 

ideas from [14] and [5]. The hypotheses were that 1) the sum 

of neural activation from the biceps and triceps muscles can 

show good correlation with the forearm FE movements, and 

2) data from a motion sensor (e.g., accelerometer, 

potentiometer, or optical tracking system) can be used to 

correct motion prediction. The proposed model uses EMG 

data from the biceps and the triceps simultaneously for elbow 

FE prediction.  

III. METHODS 

Twelve healthy subjects (7 males, 5 females) that do not 

have neural or musculoskeletal disorders were recruited for the 

trial. The subjects were between 20 and 35 years old. Each 

subject was seated comfortably on a chair and asked to put 

his/her arm in an adjustable mechanical brace (InnovatorX, 

OSSUR®). The subject’s arm was then secured to the linkage 

of the brace using straps. The brace restricts the movement of 

the limb to the sagittal plane when the upper limb is in the 

neutral position (upper arm against torso). 

Two pairs of surface EMG electrodes were placed on the 

skin overlying the biceps brachii (BB) and triceps brachii 

(TB) muscles. A reference electrode was placed on the bony 

area (at the proximal head of ulna). The skin was prepared 

only in those areas where the EMG electrodes were placed. 

According to the SENIAM’s (Surface EMG for a Non–

Invasive Assessment of Muscles, 1999) recommendations for 

skin preparation, the skin was cleaned with alcohol pads. As 

the alcohol vaporized, EMG electrodes were placed parallel 

to the muscle fibers (2 cm apart), over the muscle belly, two 

thirds of the distance between the shoulder and the elbow, see 

Fig.1.  

To compare the performance of the model with real-world 

motions, an accelerometer was placed on the inside of the 

forearm. The sensor was placed on the skin and secured with 

the help of adhesive strips. It was observed that the best place 

for the accelerometer was between the two cuffs of the lower 

arm of the brace. Thus, a specific distance that satisfies this 

requirement for each subject was assigned as being 17 cm from 

the elbow joint (Fig.1, distance between point A and point B).  
 

TABLE I. DESCRIPTION OF THE EMG-DRIVEN MODELS. 
Ref. Method RMSE 

(%) 

Limitation 

[3] Acceleration data 

and RMS of the 

EMG data was 

mapped with the 

help of a Kalman 

filter 

11.85 The model was designed to 

predict tremor, thus may be 

only suitable for fast 

motions. Low accuracy. 

[4] Artificial neural 

network 

10.49 Low accuracy 

[5] Modified Hill-

based model and 

a Kalman filter 

9.46 Low accuracy and long 

calibration process. The 

model was tested only for 

the EMG signal from the 

biceps. 

[6] Mapped model 

and a Kalman 

filter 

8.30 Low accuracy 

[9] Classic Hill's 

model 

7.50 Low accuracy and long 

calibration process. 

[10] Artificial neural 

network that uses 

MMG* in 

combination with 

EMG 

7.00 Low accuracy and the 

model was tested for 

isometric contractions 

[11] Artificial neural 

network 

6.20 Low accuracy 

[12] Hill-type model 5.22 The model was tested for 

moderate speeds 

[13] Hill’s model [17] 

with a Calcium 

concentration rule 

3.97 Limited to isometric 

contractions at a stationary 

elbow position (90°) 

[14] Fuzzy-neuro 

modifier 

6.27 Low accuracy 

[15] Switching the 

model between 

two different 

modes (velocity 

and force) 

3.63 The model is restricted to 

normal and high speeds 

(25–80°/s) 

[16] Mapping models 1.20 It is not clear how the 

model will perform for a 

ROM between 90 and 130° 

*MMG - mechanomyography 

 



 
Fig. 1. Example of placement of the EMG sensing system and the mechanical brace. 

 

Muscle activity and forearm acceleration data were tracked 

at a sampling rate of 1000 Hz with the help of a Wearable 

Body-Sensing Platform “Biosignalsplux” (Plux®). The sensed 

data were stored in a temporary file with the help of the 

“OpenSignals” software (Plux®). The proposed EMG-driven 

model and the conversion of the acceleration data to angular 

profiles was implemented and computed using MATLAB 

(MathWorks®). Each volunteer was asked to perform a 

maximal BB contraction. The EMG signal from BB and TB 

were recorded for 3 s of rest and 3 s of maximum contraction. 

The average EMG values during one full rest and one full 

contraction phase were used to identify the minimum and 

maximum values of the EMG signals for normalization 

purposes. The normalized EMG data (represented as a 

percentage) shows the strength of the signal from the muscles 

with respect to the maximum value for each subject. Hence, 

further calculations of neural activities are unitless.  

After calibration, each subject performed six sets of FE 

movements, while holding a 1 kg load. Subjects were 

instructed to move their forearm with a speed of less than 

20°/s. Practice trials were first completed to teach subjects how 

to perform slow motions with minimal shoulder movement.   

For each set of movements, a unique ROM was selected: 

1) 0–45 degrees, 2) 0–60 degrees, 3) 0–90 degrees, 4) 0–120 

degrees, 5) 45–105 degrees and 6) 90–120 degrees. Subjects 

were instructed to complete three elbow FE repetitions for 

each set. In order to eliminate the effects of muscle fatigue, 

subjects rested 2–5 minutes between each set. 

A.    Data Processing 

The raw EMG signal was processed as recommended in [5, 

18], by completing the following steps: 1) data were high-pass 

filtered (4th order Butterworth filter with a cutoff frequency of 

10 Hz) to remove any direct current offsets or low frequency 

noise caused by possible movements of the electrodes [18], 2) 

then rectified (take the absolute value of the EMG signal), and 

3) then individually normalized for each subject according to 

the prerecorded maximum and minimum EMG value from the 

BB and TB muscles.  

The data from the accelerometer were converted to an 

angular position profile and high-pass filtered with a 2nd order 

Butterworth filter with a cutoff frequency of 2 Hz. The 

normalized EMG signal 𝑒(𝑡) was used to calculate the neural 

activity [19], 𝑢(𝑡), as follows: 

   𝑢(𝑡) = 𝛼 ∙ 𝑒(𝑡 − 𝑑) − 𝛽1 ∙ 𝑢(𝑡 − 1) − 𝛽2 ∙ 𝑢(𝑡 − 2),  
where 𝑑 is the electromechanical delay (EMD), and 𝛼, 𝛽1 and 

𝛽2 are coefficients. For all trials, the coefficients used were 

calculated following the method outlined in [19], 

as: 𝛼=0.0021, 𝛽1=-1.78 and 𝛽2=0.7821. In general clinical 

practice, the EMD is inconsequential [20]. Thus, for the trial 

the EMD is assumed to be zero.  

B. Kalman Filter 

A Kalman filter (KF) consists of two phases — prediction 

and correction, see Fig.2. Each iteration goes through two 

steps: 1) the KF takes the motion prediction 𝑋𝑘−1 computed 

earlier and updates 𝑋′𝑘  according to the information from a 

motion sensor 𝑈𝑘−2, 2) it then predicts the one-step-ahead 

signal 𝑋𝑘 of the motion profile at the correction phase 

according to the noise Q and R. More details can be found in 

[5, 6]. 

The calculated muscle activity from the BB and TB 

muscles was added together to create the first input signal 

(𝑋𝑘) to the KF. Motion data from the accelerometer were used 

 

 
Fig.2. Flowchart of data in Kalman filter, where 𝑋𝑘 is the sum of the neural 
activity from the BB and TB muscles, Q is the process noise, R is the 

measurement noise, 𝑃𝑘 and 𝐺𝑘 are function of the noise, 𝑈𝑘 is the data from 

the motion sensor, 𝑈′𝑘 is the predicted motion profile (equal to the 𝑋𝑘 value 
at the correction phase), RMSEk  is the error between the real motion profile 

and the predicted signal from the KF at each iteration. The KF takes the 
motion prediction made earlier and updates it according to the information 

from a motion sensor. During the correction phase, the KF predicts the one-

step-ahead signal of the motion profile according to the noise.  



as the second input signal (𝑈𝑘). Prediction of motion 

𝑋′𝑘  relies on a previously corrected value of 𝑋𝑘 and on the 

history of the signal 𝑈𝑘 from the motion sensor. Two 

variables, 𝑃𝑘 and 𝐺𝑘, are used in the process of correction. 

Both of them are functions of the noise. The process noise Q 

and the measured noise R were defined for each individual 

during manual calibration of the KF according to the method 

described in [5]. The goal of the calibration was to achieve an 

RMSE ≤ 2.0±0.1% for a full FE movement that required the 

forearm to move from 0° to 120°. The output signal (𝑈′𝑘) 

from the KF is the predicted motion profile (output frequency 

f=1000 Hz). 

The RMSE of the model prediction with respect to the 

estimated variable and the Pearson correlation coefficient 

(CC) were used to estimate the accuracy and correlation 

between the model results and the observations. The 

correlation coefficients range from –1 to 1 where values close 

to 1 or -1 represent a high correlation. 

IV. RESULTS 

The proposed EMG-driven model was tested in real-time 

to determine the prediction accuracy of motions provided by 

healthy subjects. All subjects completed all trials. Recorded 

data were used as input signals to the model. A summary of 

the accuracy results for all subjects is presented in Figs. 3 and 

4. An example of a recorded EMG signal from the BB and TB 

muscles and their corresponding calculated neural activity is 

present in Figs. 5.A and 5.B, respectively.  The model 

predicted forearm motion trajectory (CC=1) with high 

accuracy (RMSE=1.67%), as shown in Fig. 5.C. 

The model accuracy across subjects (97.4–98.6%) and 

across different sets of exercises (97.9–98.4%) is within the 

required tolerance (96–98.5%). It can be seen in Fig. 4 that 

the error increase for lower torques occurs during the 0–45° 

and the 90–120° phases. The model replicates the subjects’ 

motions trajectory with high correlation (CC=0.99–1.00). 

However, additional trials with a large group of patients are 

necessary to understand model behavior with signals from 

healthy and restored nerves. 

V. DISCUSSION  

The results have validated that using EMG data from the 

biceps and triceps muscles provide better prediction accuracy 

than using only biceps muscle data as in [5], and that KF is a 

powerful tool for correcting the EMG-to-motion mapping 

technique (compared to the pure mapping strategy presented 

in [14]). The accuracy requirements gathered from the experts 

and the literature was between 88.0 and 98.0%. The results of 

the trials show an accuracy of 97.4–98.6% across all subjects. 

Therefore, the model is able to predict elbow flexion and 

extension motion more accurately than most of the previous 

efforts defined in the literature. The simplified motion 

prediction model also offers two other advantages: ease of 

implementation and low computation cost compared to other 

models. Across all subjects, the upper limit of the position 

prediction accuracy reaches the goal of 98.5%; on the other 

hand, the best accuracy across all sets does not achieve the 

goal by 0.1%. The lower bound accuracy (97.4%) across 

 
Fig. 3. Error distribution across subjects 

 
Fig. 4. Error distribution across different trial sets. 

 

subjects corresponds to a position error of 3.4 degrees. 

Therefore, the accuracy of the model provides a worst-case 

position error that lies within the acceptable range (2-5 

degrees). 

The variability of EMG signals caused by a vast amount of 

conditions and non-voluntary shoulder motions created a 

different error distribution for each subject (e.g., Fig. 3, 

Subject 11). Although no control was implemented for some 

subject-related parameters (posture, mental state and 

temperature), the model was able to make predictions with the 

desired accuracy.  

The raw neural activity from the BB and the TB muscles 

that has not been corrected by a KF (Fig.5.B) has shown good 

correlation with real motion data (e.g., CC=0.8664 for Subject 

12, set No. 3). Due to the EMG signal processing procedure 

used, the neural activity of the BB and TB muscles had an 

amplitude within 0 and 1. In order to link the neural activity 

to the motion profiles, it was necessary to use a KF as it can 

handle signal-scaling issues. The designed filter predicts 

motion based on the history of real position and the current 

neural signal. The proposed model uses EMG signals as the 

main controlling signal. Therefore, if at some moment of 

therapy, the subject is not able to complete the desired motion, 

the model will predict the effort required to move the limb 

according to the EMG signal and the previous angular 

position.  



 
Fig.5. Example of data from Subject 12 for set No. 3 (ROM 0–900). Each FE motion was completed within 12 s. 

A) EMG signal from BB (black) and TB (blue) muscles, B) Resulting neural activation (sum of BB and TB neural activation),  

C) Measured motion profile (black solid line) compared with predicted motion from model (blue dashed-line). RMSE=1.6696 %, CC=1. 
 

The proposed prediction model will help mechatronic 

devices aimed at active-assistive motion therapy by providing 

increased safety and decreased cost. A model that can produce 

very accurate position or torque predictions is essential to 

ensure that device motion does not overshoot the boundaries 

of the patient’s range of motion or deviate far from the 

patient’s desired motion. An overshoot of even a few degrees 

can cause pain and damage to weak tissues. Decreasing the 

likelihood of causing further tissue damage will increase 

safety for the user. The model offers a cost saving opportunity 

to devices by simplifying control system structures. Due to 

model simplicity, implementation and testing phases related 

to using the model as part of a control system will be shorter 

compared to more complicated models. Financial benefits 

will be seen as a reduction in labour hours, software module 

complexity and required circuitry. Simpler systems are also 

easier to debug, maintain and repair. 

A. Sources of Error 

For the elbow FE motion, each muscle must produce a 

different level of force. At the 90° position, the force reaches 

its peak. For 45–0°, force smoothly decreases as it approaches 

0°, whereas for 90–120°, force smoothly decreases as it 

approaches 120°. The number of motor units, i.e. neural 

pathways and all the muscle fibers they innervate, control the 

mechanism of generating force. The force can be produced in 

two ways [1]: (1) by increasing the number of active motor 

units, or (2) by increasing the frequency of stimulation to a 

motor unit. Since motor units are arranged in parallel [21], the 

total force is equal to the sum of the individual motor units. A 

frequency threshold f for a slow motor unit is 20 Hz, while for 

a fast motor unit it is 50 Hz. If the stimulation does not exceed 

the threshold, the muscle will show a series of individual 

twitches. In case the stimulation frequency Vs is above the 

threshold, then a second pulse will stimulate the muscle 

before the force effects of the first pulse have completely 

subsided (Fig. 6). Therefore, the principal frequency of the 

EMG signal is concentrated in the 30–500 Hz range [22]. On 

the other hand, the main energy is concentrated in the range 

of 0–500 Hz [23]. Thus, filtering of the EMG signal may cut 

down useful information that corresponds to the smallest 

force produced by the muscle. An increase in the error for the 

0–45° and 90–120° ranges may be attributed to this concept. 

Using optimization techniques, a smaller accuracy error 

may have been attained when compared to using a manual 

model parameter calibration. However, optimization 

techniques are computationally expensive. In addition, 

optimized parameters can take longer to compute than the 

entire time devoted to the trials of one subject depending on 

which optimization technique is used. Lastly, EMG signals 

fluctuate naturally due to fatigue, temperature, environment 

and other factors. Therefore, the optimization would need to 

occur for every usage of the device housing the proposed 

model. The time constraints these factors place on parameter 

optimization are the reasons why manual calibration was 

chosen for the experiment. 

B. Integration into Control Systems 

The model currently considers a narrow view of the control 

requirements: predicting torque or position based on EMG 

signals. To account for other control system characteristics, 

modifications such as additional accelerometers and 

saturation limits could be added to the model. Additional 

accelerometers will allow for the effects of posture and 

segment movement on prediction errors to be discovered. An 

accelerometer on the upper arm segment would allow for 

shoulder movement to occur while being able to mitigate the  

 



  

 
Fig.6. Muscle force control. Afferent axons deliver information about the 

contractile status of the muscle to the central nervous system, while efferent 

axons deliver signals for contraction from the central nervous system [23]. 

 

errors it may cause in prediction. A similar case is possible for 

all other limbs. If posture or segment position can be related 

to errors in control system output or rehabilitation outcomes, 

corrective feedback could be given to the patient. Saturation 

limits will allow the control system to function within the 

patient capabilities. Even if the model predicts values greater 

than expected, the control signals will not exceed the therapist 

specified values due to saturation of the output signal. Setting 

the limits properly will ensure that the control system will be 

unable to reach positions or torques that are outside the 

patient’s safe motion range. Another issue with integration of 

the model into a control system occurs with the output 

frequency. The smaller the output frequency, the easier it is 

for the control system to respond to a command signal from 

the model. Hence, the model output must be down sampled to 

a lower frequency. The preferred range for the desired 

frequency should not be less than the frequency of normal 

elbow motions, i.e. 0–5 Hz [24]. Therefore, a 10 Hz output 

frequency will increase system stability without signal loss. 

VI. CONCLUSION 

A simplified EMG-driven model for prediction of elbow 

motion has been developed and experimentally validated on 

twelve healthy subjects. Despite the different age, gender, 

anthropomorphic data and torque levels, the model showed 

high correlation with slow motion trajectories (CC=0.999–1), 

as well as high accuracy (97.4–98.6%) of prediction for “best 

case” scenario. For future work, the proposed model will be 

integrated into the control system of a mechatronic brace for 

rehabilitation. Modifications required for control system 

usage as well as further testing with jerky motions and 

patients with upper limb disabilities will be conducted to 

accomplish the future objectives.  
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