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I. INTRODUCTION

Accurate knowledge of the positions of people over time
provides rich, objective and quantitative data which can be
highly useful in clinical research of human locomotion be-
haviour. Examples of recent studies which have relied on
this information include analyses of the factors influencing
gait speed of stroke subjects [1] and the effects of visual
perceptions on the turning ability of stroke subjects [2]. One
commonly used method for gathering this data in clinical
scenarios is through motion capture systems, which require
a set of infrared markers to be placed on each participant and
a fixed array of infrared cameras, which must be recalibrated
before each use.

Separate from this clinical research, significant develop-
ments have been made in person detection and tracking in
the robotics realm, often with the aim of improving human-
robot interaction or robot navigation in populated environ-
ments [3] [4]. This paper presents one such method of tracking
people using planar laser range scanners, which was originally
developed for use in robotics but we believe can also be useful
in the field of clinical locomotion analysis.

The person tracking method presented here relies on planar
laser range scanners, which are distance-measuring devices
which use the time-of-flight principle to provide a fine array of
distances in a wide field of view (typically 180◦ or more) on a
plane with the laser. Since the presented approach uses a laser
range scanner instead of a fixed motion-capture system, such
as that used in [1] and [2], it benefits from greater portability,
less cost and allowing its users to be tracked naturally as they
appear without the need for added markers. Further, unlike
pure vision systems, it can reliably provide accurate distances
without the need for stereo correspondences.

II. LASER-BASED MULTI-PERSON TRACKING

People are detected and tracked in laser scans using a
combination of a machine learning classification technique
designed to detect legs from laser scans, and a filtering method
to track multiple individuals over time. The method itself is
novel, and extends previous methods on tracking-by-detection
such as [3] by incorporating a continuous detection confidence
to improve data association and by using leg pairings to
improve robustness in detection and tracking.

A. Physical laser setup

The laser is placed such that it is level with the ground and
at a height between ankle and mid-thigh of most participants.
In practice, we have experienced best results at mid-shin height

but have found it to be relatively robust to other heights, as
long as it lies in the participants’ leg region. The laser is
then connected to a computer via USB to process the range
measurements.

Most of our experiments use either a Hokoyu UHG-08LX
or URG-04LX-UG01 laser rangefinder, but any laser with a
comparable angular resolution (1/3◦) could be used as a drop-
in replacement. Lasers of different angular resolution would
work as well but would require retraining of the leg detection
method presented in Sec. II-C to achieve best performance.
Use of a higher resolution laser scanner would result in greater
accuracy and longer-range tracking, while the opposite is true
if a coarser resolution scanner were used.

B. Laser scan processing

Scan points returned from the laser are first clustered
according to a distance threshold. Any points which are within
a fixed threshold of each other are grouped together as a
cluster. The threshold (d < 13cm) was chosen to be small
enough to often separate a person’s two legs into two distinct
clusters, which is useful in later stages of the tracking, but
rarely resulted in generating more than two clusters per person.
Further, clusters containing less than three scan points are
discarded, as they provide too little geometric information and
may be the result of noise.

C. Leg-based person detection

Each cluster is then processed to extract a set of features
describing its geometric shape. These features are listed in
Table I and extend the feature set proposed in [3].

TABLE I. FEATURES USED FOR HUMAN DETECTION FROM SCAN
CLUSTERS.

Number of points Width Length
Standard deviation Avg distance from median Distance to adjacent cluster
Linearity Circularity Radius of best-fitting circle
Boundary length Boundary regularity Mean curvature
Mean angular difference Inscribed angular var. Distance from laser scanner
Occluded (boolean)

Clusters are then automatically classified as human or non-
human, based on these features. The classification is done
by training a random forest classifier using a set of positive
and negative examples [5]. Positive examples are obtained by
setting up the laser scanner in a hallway or open area with
significant pedestrian traffic; all clusters which lie in the open
areas and meet the threshold in Sec. II-B are assumed to be
the result of people and are used as positive training samples.
Negative examples are obtained by moving the sensor around
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Fig. 1. The person tracking and following system implemented on a Clearpath Husky with a Hokuyo URG-04LX-UG01 laser sensor mounted at a height of
approximately 40cm. The robot autonomously followed the participant in an approximately 500m loop on gravel and grass at the Canadian Space Agency in
Saint-Hubert. Two tracking failures occurred, one of which is shown in (c), which were caused by extensive sensor noise, as the laser scanner used is indoor-rated
and highly susceptible to interference from the sun.

in an environment devoid of people; all clusters meeting the
threshold in Sec. II-B are used as negative training samples.

One benefit of using a random forest classifier is that
because it uses an ensemble of decision trees, a measure of
confidence in the classification can be extracted by considering
the number of individual decision trees predicting each cate-
gory 1. All clusters that have a classification confidence above
a threshold value are considered as positive leg detections.
Positively detected legs which are within a threshold Euclidean
distance (d < 0.6m) of each other are then paired together, as
it is assumed the two detections represent two individual legs
belonging to the same person. This pairing is done in a greedy
manner starting with the positively detected clusters that have
the closest Euclidean distance to each other and stopping when
the closest distance between any two clusters is greater than
the threshold distance.

D. Kalman filter tracking

The position of each detected person is then tracked over
time using a separate (non-extended) Kalman filter [7]. Each
Kalman filter uses a state estimate containing the position and
velocity of the person in 2D coordinates. The motion model is
assumed to be constant velocity and only the position portion
of the state is included in the observation matrix.

E. Global nearest neighbour data association

Since the system is designed to track multiple people,
uncertainty arises pertaining to how detected people should
be matched to tracked people. This can potentially become
an intractable combinatorial optimization problem. To address
this, we use a global nearest neighbour data association method
which is solvable in polynomial time via the Munkres assign-
ment algorithm [8]. The cost metric used in the assignment is
a combination of Euclidean distance and detection confidence
from the random forest and, more specifically, is

cost(deti, trackj) = 1− po(deti, trackj)pc(deti) (1)

where deti is the ith detected person, trackj is the jth tracked
person, po(deti, trackj) is our estimated probability of observ-
ing a detection at the location of deti from trackj based on
their relative Euclidean distance and pc(deti) is the normalized

1A function for extracting this confidence is included in the random forest
classifier implementation for OpenCV [6].

confidence from the human classifier for deti. The inclusion of
the detection confidence in this equation discourages match-
ings between tracked people and non-human objects. Further,
a maximum matching distance, distmax, of 0.8m is imposed
between detections and tracks. po(deti, trackj) is estimated
as (distmax − dist(deti, trackj))/distmax. Also note that
detections can arise from either a pair of legs or a single leg,
depending on whether or not the legs were matched using the
method described in Sec. II-C. In the case of a pair of legs,
the average of each leg’s position and confidence is used in
Eq. 1.

F. Track initiation and deletion

People tracks are initiated when a person detection arising
from two simultaneously detected legs, which both have a
detection confidence above an initiation threshold, is found but
not matched to any existing person tracks. Tracks are deleted
when they are not matched to a detection in the previous 3
seconds or have had low confidence values assigned to them
from the automatic classifier in their previous updates.

G. Implementation

The tracking system is implemented in the Robot Operating
System (ROS) [9] and is based on and reuses code from the
leg detector package2 originally developed at Willow Garage
by Caroline Pantofaru and extended by David Lu in [4]. It is
provided open-source on the author’s website and includes all
data used to train the classifier as described in Sec. II-C.

III. SYSTEM DEPLOYMENT

The laser-based multi-person tracking system has been pre-
viously deployed and evaluated onboard a robotic wheelchair,
where the person detection and tracking modules are paired
with a closed-loop control algorithm to allow the smart
wheelchair to automatically follow a walking companion in
a dynamic indoor public space, such as a university, mall or
museum. The system has also been deployed on a Clearpath
Husky in an outdoor environment. Pictures of this deployment
are presented in Figure I. We have considered detection and
tracking of up to 10 individuals in an unconstrained public set-
ting. Formal data analysis from these experiments is underway
and will provide benchmark information about the accuracy
and reliability of the system.

2http://wiki.ros.org/leg detector



Three sample videos have also been included with this
paper to demonstrate the tracking capabilities of the deployed
system for the target application of tracking individuals during
rehabilitation therapy. Two videos show two participants being
tracked as they walk arbitrarily around in open space in front
of a stationary laser scanner and a third video shows tracking
in a similar scenario except with a stationary obstacle placed
in the centre of the scene.

IV. DISCUSSION

We briefly present an algorithmic approach for multi-
person detection and tracking in dynamic environments. The
main motivation for developing this system is to permit assess-
ment and evaluation of locomotion behaviour in individuals
undergoing rehabilitation therapy in a variety of environments
and conditions. The method we proposed is based on recent
developments in the robotics literature. At the technical level,
there are several aspects of the method that are currently under
development to improve accuracy and reliability of the system.
First, we are developing new methods for automatically esti-
mating the motion and observation model of the Kalman filter
directly from data. Second, we are working on incorporating
information from other sensors (including camera) to improve
disambiguation of individuals in cases of occlusion. At the
clinical level, we are preparing to use the system to charac-
terize the locomotion behavior of stroke patients both in a
rehabilitation hospital and in natural living spaces. The latter
deployment in natural living spaces is particularly promising,
as this is the type of study which was not feasible with a fixed
motion capture system. Thus, we hope to capture behaviours
not observed in clinical settings.
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