Task Routing for Prediction Tasks

Haoqi Zhang
Eric Horvitz
Yiling Chen
David Parkes

Let's do a poll.

Expertise is among us

We know each other's expertise

facebook

Leveraging expertise and knowledge of others' expertise

Task Routing

Leverage people's abilities to jointly solve problems and to route problems to others who can further contribute.

Pull

Push

Route

?

- Task routing for prediction tasks
 - Incentives for solving and routing

- Task routing for prediction tasks
 - Incentives for solving and routing
- Two cases:

•

- Task routing for prediction tasks
 - Incentives for solving and routing
- Two cases:
 - Common knowledge

- Task routing for prediction tasks
 - Incentives for solving and routing
- Two cases:
 - Common knowledge
 - Local common knowledge
 - Local routing rules (tractable and good)

MIT's red balloon mechanism [Pickard et al.]

Provides incentives for "spreading the word."

Decentralized Search [Kleinberg]

Route message towards destination using only local information

 Task: predict answer to a yes/no question whose answer is revealed in the future

 Task: predict answer to a yes/no question whose answer is revealed in the future

• Discrete time *t* = 1, 2, 3, ..., *R*

 Task: predict answer to a yes/no question whose answer is revealed in the future

• Discrete time *t* = 1, 2, 3, ..., *R*

- A person receiving the task can:
 - update the current probability estimate
 - route the task to a neighbor on the network

Information structure

- Players observe coin flips
 - Probabilistic signal of what the answer is
 - More coin flips == more information

Assume coin flips are conditionally independent

Players may know how many coin flips others observe

Example

Example with routing

Example with routing

Goal

- Want each player to:
 - Properly update probabilities
 - Route task to someone with many coin flips

- Idea:
 - Use proper scoring rules to incentivize update
 - `Properly score' routing decisions?

Common knowledge

Assumption: everyone knows how many coin flips everyone else has, and this is common knowledge.

k-step routing scoring rule

$$\alpha S_{i} - S_{i-1} + (1-\alpha)S_{k}$$

Score for update

Score for routing decision

Theorem

Under the *R*-step routing scoring rule, it is a Perfect Bayesian Equilibrium for people to update probabilities truthfully and to route to the next person in the optimal path of length *R*.

Implications

 Can incentivize local routing decisions that follow the optimal coin-collecting path.

- But...
 - Computing the optimal path is in general NP-hard
 - Common knowledge assumption is unreasonable for large networks

Without common knowledge

 People may have different information about others' expertise on the network

- To route optimally, have to reason about what other's know and don't know
 - → "optimal routing" is highly impractical

Local common knowledge

Assumption: everyone that is within some distance of a person has the same information about that person.

2-2-2-2

2-1-2-1

Breaks the chain of reasoning

m-hop local routing rules

••••

Theorem

Assume *m*-hop local knowledge holds. Under a *m*-hop local routing rule, it is a Perfect Bayesian Equilibrium for everyone to update probabilities truthfully and to route to the next person in the optimal path of length *m*.

Simulation results

Conclusion

- Task routing for prediction tasks explores connection among incentives, solving, routing, and knowledge
- Intriguing class of local routing rules that induce effective routing behaviors while promoting a simple equilibrium where people only reason about what they know
- Rich space of practical and theoretical questions

Thank you

Comments

hq@eecs.harvard.edu

my co-authors