
Chapter 7

Automated Task Design

As discussed in earlier chapters, a central challenge in designing human computa-

tion systems is understanding how to construct decision environments that effectively

attract participants and coordinate the problem-solving process. At a high level, the

design of a human computation system consists of two components. One component

is the design of incentives—social rewards, game points, and money—that helps to

attract a crowd and encourage high quality work. The other component is the organi-

zation of individuals—the selection of participants, assignment of tasks, and design of

interfaces and workflows—that helps to usefully harness individual efforts to advance

a system’s purpose. From the designer’s perspective, the goal is to maximize the rate

and quality of output, while minimizing the amount of human effort required and the

cost incurred.

In this chapter, we apply ideas from automated environment design to tackle a

common computational environment design problem that requesters face on Amazon

Mechanical Turk: how should a task be designed so as to induce good output from
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workers? This question exemplifies both the incentive and organizational aspects of

the design challenge. In posting a task, a requester decides how to break down the

task into unit tasks (called HITs, for human intelligence tasks), how much to pay for

each HIT, and how many workers to assign to each HIT. These design decisions shape

the task environment, which may affect the rate at which workers view and complete

unit tasks, as well as the quality of the resulting work.

There are a number of challenges involved in effectively designing a task for posting

on Mechanical Turk. As we saw in the nutrition analysis example in Chapter 2, a

notable problem is that the effect of design on the rate and quality of work is often

imprecisely known a priori. Any design’s effectiveness is likely dependent on the

specifics of the task, and also the quality metric specified. While a designer may

have some prior knowledge and be able to experiment with different designs, the

design space is exponential in the number of design parameters while the number

of experiments that can be performed is relatively small. Furthermore, Mechanical

Turk is an inherently noisy and dynamic system, so any measurements obtained are

affected in part by system conditions. Moreover, some statistics of interest, such as

the number of active workers currently looking for tasks to perform, are unobservable

by the requester.

Leveraging the active, indirect elicitation framework of automated environment

design, we introduce a general approach for automated task design. In this approach,

we construct models for predicting the rate and quality of work. These models are

trained on worker outputs over a set of designs, and are then used to optimize a task’s

design. We demonstrate our approach on an image labeling task, for which we aim
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to maximize the number of quality labels received, subject to budget constraints. We

consider two measures of quality: one based on the number of distinct labels received,

and another based on the number of distinct labels received that match an external

gold standard.

In our experiments, we find that simple models can accurately predict the output

per unit task for both quality metrics, and that the models generate different designs

depending on the quality metric we care about. For predicting the rate of work, we

observe that a task’s completion time is correlated with the amount of work requested

per dollar paid, and depends on the time of day when a task is posted. But despite

these effects, we find that due to varying system conditions on Mechanical Turk, the

task completion time is nevertheless difficult to predict accurately and can vary signif-

icantly even for the same design. Focusing on using the quality prediction models for

design, we find that for the same budget and rate of pay, optimized designs generated

by our models obtain significantly more quality tags on average than baseline designs

for both quality metrics.

Section 7.1 reviews related work. Section 7.2 describes the Mechanical Turk mar-

ketplace and introduces a general approach for automated task design. Section 7.3

describes the image labeling task. Before exploring different designs for this task,

Section 7.4 details an experiment to capture the amount of variability on Mechanical

Turk, where we post the same task design multiple times under varying system con-

ditions. Section 7.5 discusses our initial experiments and reports on the performance

of models for predicting the rate and quality of work. We consider optimizing the

task design based on trained models in Section 7.6, and compare the performance
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of optimized designs to baseline designs that pay at the same rate. Section 7.7 dis-

cusses the implications of our experiments for automated task design and outlines the

possibilities and challenges moving forward.

7.1 Related Work

Studies on the effect of monetary incentives on worker performance found that

monetary incentives attracted Mechanical Turk workers (Turkers) to perform more

HITs of a task [32, 66, 78, 11] but did not affect the quality of work [66, 78]. In

our image labeling task, we also find that tasks are completed more quickly at higher

rates of pay. While we find that we can accurately predict the quality of work without

factoring in compensation, we do not study the effect of pay on work quality and focus

instead on finding effective designs that elicit good output at a fixed rate of pay.

A number of studies have also considered the effect of non-monetary interventions

on work quality. Dow et al. [23] showed that asking Turkers to self-assess their work

against key performance criteria can improve work quality. Shaw et al. [85] showed

that when coupled with monetary incentives, asking Turkers to think about their

peers’ responses can also improve work quality. Findings on the effect of intrinsic

motivation on work quality are mixed; whereas Chandler and Kapelner [12] found

that framing a task as being for a good cause did not induce Turkers to produce

higher quality solutions, Rogstadius et al. [78] found in their experiments that doing

so significantly improved solution quality.

Other studies have considered designing Turk tasks by organizing workers and

aggregating output. Snow et al. [87] considered a number of different natural language
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annotation tasks, and showed that annotations based on the majority output among

a group of Turkers is comparable in quality to expert annotations, but is cheaper and

faster to obtain. Su et al. [90] considered the effect of qualification tests on worker

output and showed that workers with higher test scores achieve higher accuracy on the

actual task. In an orthogonal direction, this chapter focuses on effectively distributing

work across identical, parallel subtasks.

Human-powered database systems that recruit a crowd to perform operations such

as filters, sorts, and joins are often concerned with efficiency and interested in opti-

mizations that make better use of human effort. Marcus et al. [63, 62] introduced a

declarative workflow engine called Qurk and proposed optimizations such as batch-

ing tasks and pre-filtering tables before joins. Parameswaran et al. [70] introduced

a crowdsourced database system called Deco, and demonstrated that the choice of

query execution plan can significantly affect performance. In these systems, having

automated procedures that can learn and reason about the crowd’s performance on

tasks can potentially provide a means for query optimization, that seeks to identify

efficient, crowd-tailored query plans.

Several works have applied decision-theoretic planning techniques to control the

request for additional work in human computation systems. Kamar et al. [43] demon-

strated how predictive models can be used to control the request of additional votes for

classifying celestial objects in Galaxy Zoo. Dai et al. [16, 17] introduced TurKontrol,

a system for controlling the request of additional voting or improvement tasks based

on costs and the inferred work quality. In this chapter, we focus on a complementary

challenge of learning about workers to best design individual tasks.
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7.2 Automated Task Design on Mechanical Turk

7.2.1 Mechanical Turk

We first review the design environment presented by Amazon Mechanical Turk

(www.mturk.com). Mechanical Turk is a crowdsourcing marketplace for work that re-

quires human intelligence. Since its launch in 2005, a wide variety of tasks have been

posted and completed on Mechanical Turk. Example tasks include audio transcrip-

tion, article summarization, and product categorization. Increasingly, Mechanical

Turk is also attracting social scientists who are interested in performing laboratory-

style experiments [33].

On Mechanical Turk, a requester posts jobs for hire that registered workers can

complete for pay. A job is posted in the form of a group of HITs where each HIT

represents an individual unit of work that a worker can accept. A requester can

seek multiple assignments of the same HIT, where each assignment corresponds to a

request for a unique worker to perform the HIT. The requester sets the lifetime during

which the HITs will be available and the amount of time a worker has to complete

a single HIT. The requester can also impose a qualification requirement for a worker

to be eligible to perform the task.

When choosing a task to perform, a worker is presented with a sorted list of

available jobs, where for each job the title, reward, expiration time, and number of

HITs available are displayed. The list can be sorted by the number of HITs available

(the default), the reward, creation time, or expiration time. Workers can see a brief

task description by clicking the title, or choose to “view a HIT in this group” to see
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a preview of a HIT. At this point the worker can choose to accept or skip the HIT. If

the HIT is accepted, it is assigned to that worker until it expires or is submitted or

abandoned. Workers are not provided with additional information on the difficulty

of tasks by the system, although there is evidence of workers sharing information on

tasks and requester reputation via browser extensions and on Turk-related forums.1

Upon receiving completed assignments, the requester determines whether to ap-

prove or reject the work. If an assignment is rejected, the requester is not obligated

to pay the worker. While tasks vary greatly in pay and the amount of work required,

the reward per HIT is often between $0.01 to $0.10, and most individual HITs require

between a few seconds to a few minutes to complete. There are thousands of job re-

quests posted at any given time, which correspond to tens and hundreds of thousands

of available HITs. For each HIT completed, Amazon charges the requester 10% of

the reward amount or half a cent, whichever is more.

7.2.2 An Automated Approach to Task Design

An exciting aspect of Mechanical Turk as a human computation platform is that

it allows a requester to post arbitrary tasks for a large population of workers to com-

plete. A requester has the freedom to design his or her task as desired, with the

aim of eliciting good effort from workers toward generating useful work. The task

design allows a requester to optimize tradeoffs among the rate of work, the quality

of work, and the cost of work. While some of the qualitative aspects of tradeoffs are

well understood (e.g., paying more will increase the rate of work, both because more

1See http://turkopticon.differenceengines.com/ and http://www.turkernation.com/,
respectively.
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workers will want to accept HITs and that each worker will want to complete more

HITs [32]), optimizing the design to achieve particular tradeoffs requires a quantita-

tive understanding of the effect. The effect of non-monetary aspects of task design

(e.g., the division of a task into HITs and assignments) on the quality and quantity of

work is less well understood, even qualitatively. Such effects are likely to be specific

to the task at hand, and depend on a particular requester’s goals and constraints.

We advance an automated approach to task design based on the active, indirect

elicitation framework of automated environment design. For a given task, we first

experiment with different designs and use the workers’ output and measurements of

system conditions to learn a task-specific model of the effect of design on the rate

and quality of work.2 We then use learned models to optimize for good designs

based on their predictions. From the automated environment design perspective, we

are interested in whether a model learned from observing worker performance can

effectively guide the search for better designs.

In the rest of the chapter, we consider as a case study the problem of automatically

designing an image labeling task. We describe the task and its design space in the

next section, and then apply the following steps to discover an effective design:

1. Estimate variances in target metrics with a baseline design (Section 7.4)

2. Explore the design space with experiments (Section 7.5)

3. Fit models to the experimental data (Sections 7.5.1 and 7.5.2)

2In the general active, indirect elicitation framework, learned information can be incorporated
after each experiment and can inform which experiments to conduct thereafter. For simplicity, the
elicitation strategy we consider in this setting simply picks a set of experiments to run in batch. The
inference procedure then updates the model after all experiments are completed.
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Figure 7.1: A HIT of the image labeling task

4. Optimize the target metrics given the fitted models (Section 7.6.1)

5. Run experiments using the optimized task parameters to validate our approach

(Section 7.6.2)

7.3 The Image Labeling Task

We consider an image labeling task in which workers are asked to provide relevant

labels (or equivalently, tags) for a set of images. Each HIT contains a number of

images, and for each image, requests a particular number of labels for that image.
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Workers are informed of the number of images and number of labels required per

image within the guidelines provided in the HIT, and are asked to provide “relevant

and non-obvious tags.” Workers can provide tags containing multiple words, but

this is not required nor specified in the instructions. See Figure 7.1 for a sample

HIT that requests three labels for one image. Example labels for this image include

“NASCAR,” “race cars,” “red,” “Dale Earnhardt Jr.,” “eight,” and “tires.”

We obtained a large dataset of images from the ESP game,3 which contains 100,000

images and labels collected through gameplay. From this dataset, we use images that

contain at least ten labels, of which there are 57,745. Of these, we have used 11,461

images in our experiments. Any particular image we use appears in only one HIT.

We consider two metrics for judging the quality of labels received from workers.

One metric counts the number of unique labels received, and is thus concerned with

the number of labels collected. The other metric counts the number of labels received

that also appear as labels in our gold standard (GS) from the ESP dataset. Since the

gold standard labels are those most agreed upon in the ESP game, they are labels

that are likely to capture the most noticeable features of an image.

To compute these metrics, we first preprocess labels to split any multi-word labels

into multiple single-word labels and convert upper case letters to lower case. We then

apply the standard Porter Stemming Algorithm [75] to normalize worker and gold

standard labels. This ensures that labels such as “dog” and “dogs” are considered

the same label, which is useful for our measure of uniqueness and for comparing

received labels to the gold standard. Finally, we remove stop words such as “a” and

3http://www.cs.cmu.edu/~biglou/resources/
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“the,” which account for 0.9% of gold standard labels and 4.6% of distinct labels

collected.4

In designing the image labeling task, a designer can decide on the reward per

HIT, the number of images and tags requested per image per HIT, the total number

of HITs, the number of assignments per HIT, the time allotted per HIT, and the

qualification requirements. The requester’s goal is to maximize the number of useful

labels received as judged by the quality metric of interest, subject to any time and

budget constraints. For example, a requester may have $5 to spend, and aims to

collect as many unique tags as possible within the next six hours. One can compare

two different designs based on the amount of useful work completed within a certain

time frame, or by examining the tradeoff between the work completed per dollar spent

and the rate of work.

While each design variable may have an effect on output, we focus our efforts on

designing the reward per HIT, the number of images per HIT, the number of labels

requested per image, and the total number of HITs. For our experiments, we fix

the time allotted per HIT at 30 minutes (the default), but do not expect workers

to spend more than a few minutes per HIT. We fix the number of assignments per

HIT at 5; this gives us multiple sets of labels per image and will enable a study of

the marginal effects of recruiting an additional worker to a HIT on the quality of

output in future research. We require all workers to have an approval rate of at least

95%, such that only workers with 95% or more of their previously completed HITs

approved are allowed to work on our task.

4We used a short, conservative list of stop words from http://www.textfixer.com/resources/.
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When posting tasks, we collect measurements of worker views and accepts over

time, the amount of time a worker spends on a HIT, and the value of output as judged

by our quality metrics. We also collect information on system conditions such as the

time of day, the number of HITs available on Turk, the page position of our posting in

different list orderings, and the number of completed HITs overall in Mechanical Turk.

The last statistic is not available directly, and is estimated by tracking the change in

the number of HITs available for tasks in the system at two minute intervals.

7.4 Measuring Output Variability

Before considering the effect of design on output, we first report on the amount of

variability in the output from Mechanical Turk when using a fixed task design. This

lets us know how much variance to expect from the system, and allows us to study

the effect of system conditions on output.

By observing and following common practice on Mechanical Turk, we selected a

design for which each HIT has a reward of $0.01, contains one image, and requests

three labels. We posted a group of 20 HITs at a time, and posted 24 groups of the

same task design from 4/12/2010 to 4/20/2010. Each group of HITs was allowed

to run for approximately eight hours, and groups of HITs were posted sequentially

around the clock. All groups had at least 75% of the assignments completed, with 18

of the 24 groups finishing before the time expired.

Table 7.1 summarizes the mean and standard deviation of the rate and quality

of output along a number of measurements.5 The task took 5 hours and 30 minutes

5We measure the completion time of an unfinished task as the time until the job expires (∼8
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Statistic Mean Standard Deviation

Time to 50% completion (min) 129.54 95.13 / 73%
Time to 100% completion (min) 330.44 124.93 / 38%
Total # of unique tags 264.56 18.06 / 7%
Total # of unique tags in GS 98.56 9.50 / 10%
# of unique workers 13.33 2.99 / 22%
Time to complete a HIT (s) 74.79 25.12 / 34%

Table 7.1: Statistics on a group of image labeling tasks with 20 HITs that was posted
24 times between 4/12/2010 and 4/20/2010. Each HIT pays $0.01 and requests three
labels for one image.

to complete on average, with the quickest run completing in just under 52 minutes

and the longest run taking 8 hours and 37 minutes. Unlike task completion time, the

number of unique labels received and the number of such labels that are in the gold

standard vary much less, suggesting that the quality of output from workers remains

relatively constant under different system conditions.

One possible explanation for the significant variation in completion time is that the

activity level of workers on Mechanical Turk varies over time. While we do not know

how many workers are active on Mechanical Turk at any given time, it is reasonable

to think that activity level is correlated with time of day. That is, the system is likely

more active during particular “work hours” than at other times. In Figure 7.2 we

plot the relationship between the posting time and the time by which 50% or 100%

of the tasks were completed. We observe that jobs posted between 6AM GMT and

3PM GMT were completed most quickly; this corresponds to posting between 2AM

to 11AM EST in the United States and 11:30AM to 8:30PM IST in India, the two

countries that provide 80% of workers on Mechanical Turk [39]. Given that these

hours), and only measure the number of tags and unique workers for completed tasks.
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Figure 7.2: The effect of posting time on time until 50% and 100% completion. Bins
depict the average completion time of runs posted within a three hour period and
error bars represent the standard error. Experiment conducted from 4/12/2010 to
4/20/2010.

times correspond to waking hours in India, we expect most of the workers interested

in this task to be from India. We geolocated workers based on their IP addresses

by using the Linux shell command whois. Of the IP addresses for which we can

determine the country of origin (247 out of 307), 62% were from India and 23% were

from the US, which is consistent with our intuition.

7.5 Initial Experiments and Behavioral Models

From the variability measurements we learned that the completion time of a task

may be highly variable, and may be difficult to predict accurately even for a fixed

design. While some of the time variability can be explained by the time of day

in which the task is posted, there is still a substantial amount of residual noise. In
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contrast, we find that the quality of work does not vary much with system conditions.

Based on these observations, we expect that task design may have a large effect on

the quality of work, but will only partially influence the rate of work.

In order to understand the effect of design on worker output, we developed models

for predicting the quality of labels received per HIT and the completion time. We

performed a series of 38 initial experiments—which serves as our training data—in

which we varied the task’s design (or configuration) by changing the reward (R), the

number of images (Npic) and number of labels per image per HIT (Ntag), and the num-

ber of HITs (Nhits). We considered rewards in the range of $0.01 and $0.10 per HIT,

and varied the number of images and tags requested between 1 and 10. In choosing

configurations, we aimed to cover a large range of values along each dimension, and to

vary the total number of tags requested per dollar pay, i.e., NpicNtag/R. For the most

part we considered jobs that consist of groups of 20 HITs (in 31 configurations), but

also included a few jobs containing 30, 150, 500, and 1000 HITs, respectively. Con-

figurations were randomly ordered and allowed to run until completion. They were

automatically posted in series over a three week period from 2/2/2010 to 2/24/2010

with no gaps between postings. We fixed the number of assignments (Nasst) requested

per HIT at five, and required all workers to have an approval rate of at least 95%.

In considering models for predicting the rate and quality of work, we measured

the goodness of fit by reporting the coefficient of determination (R2), the root mean

square error (RMSE), the root relative square error (RRSE), and the mean absolute

error (MAE), between predicted and actual output. All statistics are computed for

the hold-out data via leave-one-out cross-validation.
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7.5.1 Predicting Label Quality

We consider models for predicting the average number of quality labels received

from workers. A summary of model coefficients and fitness is presented in Table 7.2.

Predicting Unique Tags

For predicting the average number of unique tags that are received per assignment

(Nunique),
6 we hypothesized that we would experience diminishing marginal returns

as we request more tags per image, suggesting the following model:7

Nunique = βNpiclog(Ntag) + ε (7.1)

We find that the model’s predictions are somewhat accurate, with R2 = 0.77. We

also considered a model without diminishing marginal returns in the number of labels

requested:

Nunique = βNpicNtag + ε (7.2)

Surprisingly, we observe a significantly better fit, with R2 = 0.96; see Figures

7.3(a) and 7.3(b) for a comparison between the two models’ predictions. The model

without diminishing returns suggests that the proportion of overlap in tags entered

across the five assignments is invariant to the number of tags requested, and that

at least within the range of values in our training data we do not observe workers

running out of tags to describe an image.

6We compute the per assignment contribution by dividing the number of quality tags collected
per HIT by the number of assignments, which is fixed at five.

7When taking a log, we smooth the input data by adding 1 to the number of tags (Ntag) to
ensure the feature has weight instead of evaluating to zero.
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Figure 7.3: Predicted vs. actual number of quality tags received per assignment
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Predicting Unique Tags that are in Gold Standard

For predicting the average number of unique tags received per assignment that

are in the gold standard (Ngs), we again hypothesized that there would be an effect

of diminishing marginal returns as we request more tags per image. Since there is a

limited number of tags per image within the gold standard with which the collected

tags can match, we would expect the effect of diminishing returns to be much stronger

than for our other quality metric. We consider the following model:

Ngs = βNpic log(Ntag) + ε (7.3)

The prediction is highly accurate, with R2 = 0.96. The model’s fit is significantly

better than the fit of a model without diminishing returns (R2 = 0.77); see Figures

7.3(c) and 7.3(d).

7.5.2 Predicting Completion Time

Continuing, we consider models for predicting completion time based on a task’s

design. Table 7.3 provides a summary of model coefficients and fitness.

Intuitively, a task is more attractive if the pay is high but the amount of work is

low. Given similar amounts of work, we would expect the number of tags requested

per dollar pay (rate of pay) to be correlated with a task’s completion time. We

consider all 31 configurations with 20 HITs from our training data, and predict the

50% completion time (T1/2) and 100% completion time (T ) using the following model:

T = β0 + β1
NpicNtag

R
+ ε (7.4)
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We see that the rate of pay is correlated with the completion time, with R2 =

0.68 for predicting 100% completion. The correlation is weaker for predicting 50%

completion time, with R2 = 0.45.

From the results of our variability study, we also expect the time of posting to

affect the completion time. As we saw in Figure 7.2, the effect of time of day on

completion time is sinusoidal. To incorporate this effect into our model, we convert

the time of day to an angle t between 0 and 2π, corresponding to 0:00 GMT and

24:00 GMT respectively, and then encode it as two units, cos(t) and sin(t). This

encoding scheme ensures that each time of day has a distinct representation and that

the values for times around midnight are adjacent. Adding these time variables, we

fit the following model:

T = β0 + β1
NpicNtag

R
+ β2 cos(t) + β3 sin(t) + ε (7.5)

We observe an improvement in the fit, with R2 = 0.79 for 100% completion time,

and R2 = 0.70 for 50% completion time; see Figure 7.4 for a comparison between

the models’ predictions. This improvement is more significant for predicting 50%

completion time (R2 from 0.45 to 0.70) than for 100% completion time (R2 from 0.68

to 0.79). One possible explanation is that the effect of the posting time diminishes

when HITs are posted for a longer time frame that includes other times of the day.

The fit of these models suggests that the rate of pay and the time of posting are

correlated with the completion time, but that there is still a substantial amount of

unexplained variance. To use these models for prediction and design, it would be

useful to consider not only the expected completion time, but also to be mindful of

the variance in the prediction. Furthermore, the current models are only trained on
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Figure 7.4: Predicted vs. actual time until 50% and 100% completion (in seconds).
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configurations with 20 HITs, and do not incorporate the effect of varying the number

of HITs. We leave the exploration of these directions for future work, and for now

focus on using the quality prediction models for design.

7.6 Design Experiment

The initial experiments provide us with an understanding of how workers respond

to different designs and thus serve as the building blocks for effective task design. Even

at the same level of desirability to workers—e.g., as measured by the pay per tag, or

more generally, the estimated pay per hour—we expect some designs to induce more

quality output than other designs. We now investigate whether the learned models

can help us make informed design decisions for particular quality metrics of interest.

7.6.1 Design Optimization and Experiment Setup

We consider a simple design experiment in which we compare different designs

at a fixed pay per tag. We focus our comparison on the number of quality labels

received (per dollar spent), and do not concern ourselves with the rate at which work

completes.8 Fixing the rate of pay allows us to compare designs based on the kind of

work they request, and removes the effect of assigning more work at a lower rate of

pay to get more quality labels from confounding the comparison.

We consider experiments at two pay rates: a low rate that pays 1¢ for every

three tags, and a high rate that pays 1¢ per tag. For each pay rate, we compare the

8In practice, we can set the rate of pay based on how quickly we want work to get done. But
since time is not considered in this experiment, fixing the rate of pay allows for a fair comparison
between designs.
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output of baseline designs to designs optimized for each of our two quality metrics.

Baseline designs are chosen by observing common practice in image labeling tasks on

Mechanical Turk, which typically requests three or four tags for a single image within

each HIT. Each design is given a budget of $5, which must account for fees paid to

Amazon as well as payments to workers. As in our initial experiments, the number

of assignments per HIT (Nasst) is fixed at 5.

To optimize the task design, we choose values for the reward per HIT (R), num-

ber of images per HIT (Npic), number of tags requested per image (Ntag), and the

total number of HITs (Nhits), in order to maximize the total number of quality tags

received as predicted by the model with the best fit, subject to budget and rate of

pay constraints. We consider rewards in the range of $0.01 to $0.10 per HIT, and

the number of images and tags requested per image in the range of 1 to 10. For

example, the following formulation captures the optimization problem for finding a

design that maximizes the total number of unique tags received as predicted by our

model, subject to a $5 budget and a pay rate of $0.01 per tag:

max
R,Npic,Ntag ,Nhits

0.8426NpicNtagNhitsNasst (7.6)

NHITNasst(R + max(0.1R, 0.005)) ≤ 5 (7.7)

R/NpicNtag = 0.01 (7.8)

Constraint 7.7 ensures that the cost of the design stays within budget, and con-

straint 7.8 ensures that the pay per tag is $0.01. The max term in the budget

constraint corresponds to Mechanical Turk’s per assignment fees, which is 10% of the

reward or half a cent, whichever is more.

Table 7.4 summarizes the baseline and optimized designs for both pay rates and
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quality metrics. For the low pay rate, we consider a baseline design that requests

3 tags for one image, which is the same design that we had adopted for measuring

variability (but with more HITs). For maximizing the number of unique tags collected,

we see that the optimized design attempts to save on posting fees by putting more

work into a HIT and paying more per HIT, which allows for more tags to be requested.

For maximizing the number of unique tags that are in the gold standard, the optimized

design avoids diminishing returns by requesting 1 tag per image, and also saves on

posting fees by putting more work in a single HIT.

For the high pay rate, we consider a baseline design that requests 4 tags for one

image. Here the optimized designs for the two quality metrics are the same. More

work is put into each HIT to save on posting fees (hitting the upper bound on reward

per HIT) and only 1 tag is requested per image to avoid diminishing returns.

Figures 7.5(a) and 7.5(c) show the models’ predictions with bars representing the

95% prediction interval for these designs. We see that the difference in the predicted

numbers of unique tags per dollar spent between baseline and optimized designs is

small, since the benefits of the optimized design comes only from savings in posting

fees. By avoiding diminishing returns in tags, designs optimized for the numbers of

unique tags that are in the gold standard are expected to perform significantly better.

We post five groups of each baseline and optimized design in round-robin order.

Each group ran initially for 6 hours and was allowed to finish at a later time if needed.9

9We initially posted the baseline designs between 3/25/2010 and 3/29/2010, and the optimized
designs between 4/22/2010 and 4/26/2010. While almost all trials of the high pay configurations
completed within this time frame, many of the low pay configurations did not; these configurations
were ran to completion between 4/29/2010 and 5/7/2010.
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(d) Actual number of unique tags in gold

standard per dollar spent.

Figure 7.5: Predicted and actual number of quality tags received per dollar spent for
baseline and optimized designs. Error bars in predictions indicate the 95% prediction
intervals, and error bars in results represent the standard error over five runs of each
design.

7.6.2 Results

Figures 7.5(b) and 7.5(d) show the average number of unique tags and the average

number of unique tags in the gold standard received per dollar spent, with bars

capturing the standard error of the mean.
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In all comparisons, we find that the optimized designs received more quality tags

than baseline designs. The optimized designs for unique tags received 38% more tags

in the low pay condition, and 33% more in the high pay condition. For collecting

unique tags that are in the gold standard, the optimized designs received significantly

more quality tags than the baseline comparisons, with 71% more in the low pay

condition and 60% more in the high pay condition. For all baseline and optimized

designs, the actual number of gold standard tags received is very close to our model’s

predictions (within 11%), and well within the prediction intervals.

Interestingly, our optimized designs received significantly more unique tags than

our models predicted: 28% more in the low pay condition and 38% more in the high

pay condition. One possible explanation is that our model underpredicts the number

of unique tags when the number of tags requested per image is low, as is the case in

our designs. After checking the model’s predictions on the training data, we noticed

that our model underpredicts for 10 out of the 11 configurations that request one

or two tags per image (by 15% on average). Our model also underpredicted the

number of unique tags obtained by the baseline in the low pay condition by 27%,

suggesting that the model may need to be refined to improve prediction accuracy.

Nevertheless, the information contained in the model was still helpful in discovering

optimized designs that significantly outperform the baseline designs.

7.7 Discussion

By collecting data about how workers respond to designs in our initial experiments,

we are able to construct models that can accurately predict worker output in response
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to different designs. These models can then be used to optimize a task’s design,

subject to designer constraints such as budget and rate of pay, to induce quality

output from workers. The results from our experiments show that designs that are

optimized based on learned models obtain significantly more high quality labels than

baseline comparisons.

There are a number of possible extensions to this work. We would like to under-

stand the effect of distributing work across multiple assignments on the quality of

output, and to include the number of assignments as a design variable. We are also

interested in revisiting models for predicting the rate of work, and incorporating them

to design with respect to time-related tradeoffs. One possible direction is to learn the

relative rates at which work completes for different designs, which may be sufficient

for accurately predicting the relative output between designs. Furthermore, while we

focus here on the design of a task with identical, parallel subtasks, we are interested

in developing a general approach for automating the design of human computation

algorithms and workflows. We discuss this in the next chapter.

We believe the active, indirect elicitation approach of learning from observations

of behavior to optimize designs can be effectively used to design a variety of tasks,

with respect to different performance metrics, and in richer design spaces. While

linear regressions were used for this work, other modeling approaches and methods

from machine learning and statistics can be incorporated into the design process.

The models of behavior need to be specific to the particular task and performance

metric at hand. Constructing accurate models will likely require drawing from an

understanding of the task domain and the population of workers, and learning from
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experimentation.

In addition to accurate models, we need methods that help to discover effective

designs quickly after only a few experiments. While we trained our models on a set of

manually picked designs and then used these models to optimize the design, we can

develop elicitation strategies that automatically pick subsequent experiments in a way

that drives the search for better designs. In the next chapter, we develop a general

method for automatically synthesizing workflows in which the system optimizes the

choice of experiments to maximize the value of information obtained.


